This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

172823-Thumbnail Image.png
Description

When scientists discovered a 3.3
million-year-old skeleton of a child of the human lineage (hominin) in
2000, in the village of Hadar, Ethiopia, they were able to study growth
and development of Australopithecus
afarensis, an extinct hominin species. The team of researchers,
led by Zeresenay Alemseged of the Max Planck

When scientists discovered a 3.3
million-year-old skeleton of a child of the human lineage (hominin) in
2000, in the village of Hadar, Ethiopia, they were able to study growth
and development of Australopithecus
afarensis, an extinct hominin species. The team of researchers,
led by Zeresenay Alemseged of the Max Planck Institute for Evolutionary
Anthropology in Leipzig, Germany, named the fossil DIK 1-1 and nicknamed
it Dikika baby after the Dikika research site. The Dikika fossil
preserves much of the skull, including the jaw and teeth, which enabled
scientists to study the teeth microstructures and to reconstruct the
pace at which individuals of the hominin A. afarensis
developed.

Created2015-02-02
172824-Thumbnail Image.png
Description

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled

Dinosaur egg parataxonomy is a classification system that organizes dinosaur eggs by descriptive features such as shape, size, and shell thickness. Though egg parataxonomy originated in the nineteenth century, Zi-Kui Zhao from Beijing, China, developed a modern parataxonomic system in the late twentieth century. Zhao's system, published in 1975, enabled scientists to organize egg specimens according to observable features, and to communicate their findings. The eggshell protects the developing embryo, enables gas exchange between the embryo and the environment external to the egg, and the internal components of the egg provide nutrients for the embryo. Those external and internal features that support a developing embryo leave their mark on eggshells. Dinosaur egg parataxonomy classifies those characteristics and provides insight into dinosaur egg-laying behaviors, reproductive physiology, and embryonic development.

Created2015-03-23
173801-Thumbnail Image.png
Description

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental timelines of organisms. Cope proposed this law as an additional

The Law of Acceleration of Growth is a theory proposed by Edward Drinker Cope in the US during the nineteenth century. Cope developed it in an attempt to explain the evolution of genera by appealing to changes in the developmental timelines of organisms. Cope proposed this law as an additional theory to natural selection. He argued that the evolution of genera, the more general groups within which biologists group species, occurs when the individual in a species move through developmental stages faster than did their ancestors, but within the same fixed period of gestation, and thus can undergo new developmental stages and develop new traits. The Law of Acceleration compliments Cope's Law of Retardation of Growth. He described the later law as the process by which organisms revert to an ancestral stage. In these cases, forces suppress the most recent traits or stages common to the development of individuals from different species within the same genus. Cope described evolution as progressive, following a predetermined path, a perspective about evolution sometimes called orthogenetic. Cope's was one among many orthogenic theories in the second half of the nineteenth century. Furthermore, the theory was part of a trend in nineteenth century in which some biologists claimed that the changes in developmental timing of organisms could explain large changes in biological forms throughout natural history.

Created2014-07-24