This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
173934-Thumbnail Image.png
Description

The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist

The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist in the world. Pieter Nieuwkoop edited each issue from 1949 until 1964, when Job Faber began assisting Nieuwkoop. Bert Z. Salome joined the editing team in 1968 before Nieuwkoop ceased editing duties in 1971. Faber and Salome remained the editors from 1971 until the periodical's final year of circulation in 1981. The Hubrecht Laboratory, a national laboratory created to house a large collection of comparative embryological materials and loan them to interested researchers, sponsored the publication after World War II to facilitate international collaboration and prevent unnecessary duplication of work. The catalog of researchers and the scientific topics grew in number and variety as the field of developmental biology changed during the publication's thirty-two year history.

Created2013-01-03
173233-Thumbnail Image.png
Description

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos. Illmensee also worked with human embryos, investigating how embryos split to form identical twins.

Created2017-02-26
172716-Thumbnail Image.png
Description

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.

Created2013-09-17
172819-Thumbnail Image.png
Description

Charles Robert Cantor helped sequence the human genome, and he developed methods to non-invasively determine the genes in human fetuses. Cantor worked in the US during the twentieth and twenty-first centuries. His early research focused on oligonucleotides, small molecules of DNA or RNA. That research enabled the development of a

Charles Robert Cantor helped sequence the human genome, and he developed methods to non-invasively determine the genes in human fetuses. Cantor worked in the US during the twentieth and twenty-first centuries. His early research focused on oligonucleotides, small molecules of DNA or RNA. That research enabled the development of a technique that Cantor subsequently used to describe nucleotide sequences of DNA, a process called sequencing, in humans. Cantor was the principal scientist for the Human Genome Project, for which scientists sequenced the entirety of the human genome in 2003. Afterwards, Cantor became the chief scientific officer for Sequenom Inc., a company that provided non-invasive prenatal genetic testing. Such tests use a pregnant woman's blood to identify genetic mutations in a fetus during the first trimester of pregnancy.

Created2015-06-11
Description

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they

George Wells Beadle and Edward Lawrie Tatum's 1941 article Genetic Control of Biochemical Reactions in Neurospora detailed their experiments on how genes regulated chemical reactions, and how the chemical reactions in turn affected development in the organism. Beadle and Tatum experimented on Neurospora, a type of bread mold, and they concluded that mutations to genes affected the enzymes of organisms, a result that biologists later generalized to proteins, not just enzymes. Beadle and Tatum's experiments provided an early link between genetics and the field of molecular biology.

Created2014-06-11
172872-Thumbnail Image.png
Description

Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing

Roy John Britten studied DNA sequences in the US in the second
half of the twentieth century, and he helped discover repetitive
elements in DNA sequences. Additionally, Britten helped propose
models and concepts of gene regulatory networks. Britten studied the
organization of repetitive elements and, analyzing data from the
Human Genome Project, he found that the repetitive elements in DNA
segments do not code for proteins, enzymes, or cellular parts.
Britten hypothesized that repetitive elements helped cause cells to
differentiate into more specific cell kinds among different
organisms.

Created2014-10-24
172905-Thumbnail Image.png
Description

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.

Created2012-10-11
172909-Thumbnail Image.png
Description

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene Msx1 (Homeobox 7) functions in regenerating amputated digits. The researchers showed that in the process of regenerating digit tips, Msx1 genes make products that regulate or influence other genes, such as the Bone Morphogenetic Protein 4 gene (BMP4 gene), to produce proteins, such as the BMP4 proteins. The researchers also showed that BMP4 proteins, which are produced from the BMP4 gene, function in tissues during the process of limb development. Furthermore, while Msx1 genes regulate other genes during the process of regeneration, they don't produce proteins otherwise needed to organize cells in the regeneration of digit tissues. The group published their results in 2003 as Digit Regeneration Is Regulated by Msx1 and BMP4 in Fetal Mice.

Created2015-04-13
172911-Thumbnail Image.png
Description

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of
DNA at the ends of chromosomes that protect chromosomes from tangling, and they provide some protection from mutations. Greider also studied telomerase, an enzyme that repairs telomeres. Without telomeres, chromosomes are subject to mutations that can lead to
cell death, and without telomerase, cells might not reproduce fast enough during embryonic development. Greider's research on telomeres helped scientists explain how chromosomes function within cells.

ContributorsBartlett, Zane (Author) / Wagoner, Nevada (Editor)
Created2015-01-26