This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
173934-Thumbnail Image.png
Description

The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist

The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist in the world. Pieter Nieuwkoop edited each issue from 1949 until 1964, when Job Faber began assisting Nieuwkoop. Bert Z. Salome joined the editing team in 1968 before Nieuwkoop ceased editing duties in 1971. Faber and Salome remained the editors from 1971 until the periodical's final year of circulation in 1981. The Hubrecht Laboratory, a national laboratory created to house a large collection of comparative embryological materials and loan them to interested researchers, sponsored the publication after World War II to facilitate international collaboration and prevent unnecessary duplication of work. The catalog of researchers and the scientific topics grew in number and variety as the field of developmental biology changed during the publication's thirty-two year history.

Created2013-01-03
173263-Thumbnail Image.png
Description

The article Experimental Studies on Congenital Malformations was published in the Journal of Chronic Diseases in 1959. The author, James G. Wilson, studied embryos and birth defects at the University of Florida Medical School in Gainesville, Florida. In his article, Wilson reviewed experiments on birds and mammals from the previous

The article Experimental Studies on Congenital Malformations was published in the Journal of Chronic Diseases in 1959. The author, James G. Wilson, studied embryos and birth defects at the University of Florida Medical School in Gainesville, Florida. In his article, Wilson reviewed experiments on birds and mammals from the previous forty years to provide general principles and guidelines in the study of birth defects and teratogens, which are things that cause birth defects. Those principles included what species are convenient for conducting teratological research, what principles act in human embryological and fetal development, and what agents impact those processes. Wilson's article was one of the first attempts in the twentieth century to synthesize basic research conducted in the field of teratology. The article helped to establish teratology as a field in medicine during the twentieth century.

Created2017-06-15
173122-Thumbnail Image.png
Description

In June 2017, the Iowa Supreme Court decided the case Plowman v. Fort Madison Community Hospital, or Plowman v. FMCH, and ruled that women who gave birth to children with severe disabilities could sue for wrongful birth in Iowa. Specifically, after Plowman v. FMCH, a woman could sue for wrongful

In June 2017, the Iowa Supreme Court decided the case Plowman v. Fort Madison Community Hospital, or Plowman v. FMCH, and ruled that women who gave birth to children with severe disabilities could sue for wrongful birth in Iowa. Specifically, after Plowman v. FMCH, a woman could sue for wrongful birth if she believed that her physicians failed to disclose evidence of fetal abnormalities that may have prompted her to terminate the pregnancy. Pamela and Jeremy Plowman filed the suit against the Fort Madison Community Hospital in Fort Madison, Iowa, alleging that hospital physicians failed to inform them that a prenatal test showed fetal abnormalities. Plowman v. FMCH gave women in Iowa the legal right to sue if physicians failed to tell them about fetal defects.

Created2019-05-23
Description

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests. Pregnant women who take Thalidomide are at grater than normal risk for spontaneous abortion and for giving birth to children with developmental anomalies such as shortened, absent, or extra limbs, as well as a variety of heart, ear, and internal organ defects. The failure of rodent models to inform scientists of Thalidomide's teratogenicity in humans ignited debate about the proper use of cross-species testing during drug development.

Created2014-03-07
173196-Thumbnail Image.png
Description

Methylmercury (MeHg) is an organic form of mercury that can damage the developing brains of human fetuses. Women who consume methylmercury during pregnancy can bear children who have neurological issues because methylmercury has toxic effects on the nervous system during embryonic development. During the third week of gestation, the human

Methylmercury (MeHg) is an organic form of mercury that can damage the developing brains of human fetuses. Women who consume methylmercury during pregnancy can bear children who have neurological issues because methylmercury has toxic effects on the nervous system during embryonic development. During the third week of gestation, the human nervous system begins to form in the embryo. During this gestational period, the embryo's nervous system is particularly susceptible to the influence of neurotoxins like methylmercury that can result in abnormalities. Furthermore, the fetal brain can incur damage despite the lack of signs of poisoning in the pregnant woman. In children, defects due to methylmercury can result in deficits in attention, behavior, cognition, and motor skills.

Created2016-04-18
172716-Thumbnail Image.png
Description

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.

Created2013-09-17
173004-Thumbnail Image.png
Description

In 1861, William John Little published, “On The Influence of Abnormal Parturition, Difficult Labors, Premature Birth, and Asphyxia Neonatorum, on the Mental and Physical Condition of the Child, Especially in Relation to Deformities,” hereafter “Abnormal Parturition,” in the Transactions of the Obstetrical Society of London. In the article, Little discussed

In 1861, William John Little published, “On The Influence of Abnormal Parturition, Difficult Labors, Premature Birth, and Asphyxia Neonatorum, on the Mental and Physical Condition of the Child, Especially in Relation to Deformities,” hereafter “Abnormal Parturition,” in the Transactions of the Obstetrical Society of London. In the article, Little discussed the causes and types of what he refers to as abnormal births, and theorized how those births affect an infant’s likelihood of exhibiting a deformity. Little defined abnormal births as those involving an atypical maternal or fetal presentation, such as a slow birthing process or a fetus exiting the birth canal feet first rather than head first. In his article, Little published one of the first definitional frameworks to describe a condition causing rigidity and stiffness in the limbs that is often associated with birth-related trauma, which was then called Little’s disease, but is modernly known as spastic Cerebral Palsy.

Created2021-05-02
173009-Thumbnail Image.png
Description

William John Little was one of the first orthopedic surgeons to research congenital malformations and their causes in the nineteenth century and presented preliminary research on a condition modernly known as cerebral palsy, a condition of varying severity that affects a person’s ability to move. Little worked throughout the United

William John Little was one of the first orthopedic surgeons to research congenital malformations and their causes in the nineteenth century and presented preliminary research on a condition modernly known as cerebral palsy, a condition of varying severity that affects a person’s ability to move. Little worked throughout the United Kingdom for the majority of the time he practiced medicine, and eventually founded one of the first orthopedic infirmaries, the Royal Orthopedic Hospital in London, England. Throughout his career, Little studied congenital malformations, which are medical conditions inherited before birth, as well as how certain medical circumstances during delivery affect the neonate. In 1861, he described a condition with motor, behavioral, and cognitive irregularities in neonates, linked with oxygen deprivation during birth. Little’s research on that condition, originally called Little’s disease, and modernly, spastic cerebral palsy, was one of the first accounts of cerebral palsy in infants.

Created2021-05-03
173049-Thumbnail Image.png
Description

Michael R. Harrison worked as a pediatric surgeon in the US throughout the late-twentieth century and performed many fetal surgeries, including one of the first successful surgeries on a fetus in utero, or while it is still in its gestational carrier’s body, also called open fetal surgery. A fetus is

Michael R. Harrison worked as a pediatric surgeon in the US throughout the late-twentieth century and performed many fetal surgeries, including one of the first successful surgeries on a fetus in utero, or while it is still in its gestational carrier’s body, also called open fetal surgery. A fetus is an organism developing inside of the uterus that is anywhere from eight weeks old to birth. Harrison hypothesized that open fetal surgery could correct developmental defects that may become fatal to the fetus at birth. After years of research, Harrison and his colleagues at the University of California, San Francisco, in San Francisco, California, performed surgery on the fetus of a woman in her seventh month of pregnancy to correct the fetus’s developmental defects. The surgery was successful, as the fetus developed into a healthy child. Harrison’s work led to advancements in fetal treatment techniques, such as a method to conduct open fetal surgery that will not harm the fetus or pregnant woman, as well as the establishment of one of the first fetal treatment centers in the US.

Created2021-08-04