This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

173119-Thumbnail Image.png
Description

The goal of this research project was to examine how different messaging techniques, and especially expressions of emotionality surrounding the loss and recovery of biodiversity, can differently influence public attitudes about conservation and the environment. This question was explored using the case of de-extinction, an emerging and controversial conservation technology.

The goal of this research project was to examine how different messaging techniques, and especially expressions of emotionality surrounding the loss and recovery of biodiversity, can differently influence public attitudes about conservation and the environment. This question was explored using the case of de-extinction, an emerging and controversial conservation technology. De-extinction claims to “resurrect” extinct species, challenging widely held notions of extinction as permanent. Yet seeing extinction as reversible may shift how people feel about biodiversity loss and our moral responsibility to stop it.

Created2021-11-30
173112-Thumbnail Image.png
Description

In 2018, He Jiankui uploaded a series of videos to a YouTube channel titled “The He Lab” that detailed one of the first instances of a successful human birth after genome editing had been performed on an embryo using CRISPR-cas9. CRISPR-cas9 is a genome editing tool derived from bacteria that

In 2018, He Jiankui uploaded a series of videos to a YouTube channel titled “The He Lab” that detailed one of the first instances of a successful human birth after genome editing had been performed on an embryo using CRISPR-cas9. CRISPR-cas9 is a genome editing tool derived from bacteria that can be used to cut out and replace specific sequences of DNA. He genetically modified embryos at his lab in Shenzhen, China, to make them immune to contracting HIV through indirect perinatal transmission from their father, who was infected with the virus. HIV is a virus that attacks the immune cells of its host and weakens their ability to fight off diseases. At the time of He’s experiment, various treatments already existed at that could prevent the fetuses from contracting HIV without the need for gene surgery. Nonetheless, He’s experiment led to one of the first successful births of fetuses resulting from genetically modified embryos. He kept his experiment secret until he uploaded the videos announcing the birth of the fetuses, born as two twin girls. The experiment discussed in the videos was successful, but many scientists criticized the experiment due to ethical concerns with the way He conducted it.

Created2021-07-31
172961-Thumbnail Image.png
Description

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance conservation efforts in sometimes controversial ways. In order to de-extinct the woolly mammoth, researchers theorize that they can manipulate the genome of the Asian elephant, which is the mammoth’s closest living evolutionary relative, to make it resemble the genome of the extinct woolly mammoth. While their goal is to create a new elephant-mammoth hybrid species, or a mammophant, that looks and functions like the extinct woolly mammoth, critics have suggested researchers involved in the project have misled and exaggerated the process. As of 2021, researchers have not yet succeeded in their efforts to de-extinct the woolly mammoth, but have expressed that it may become a reality within a decade.

Created2021-01-19
172926-Thumbnail Image.png
Description

Multiplex Automated Genome Engineering, or MAGE, is a genome editing technique that enables scientists to quickly edit an organism’s DNA to produce multiple changes across the genome. In 2009, two genetic researchers at the Wyss Institute at Harvard Medical School in Boston, Massachusetts, Harris Wang and George Church, developed the

Multiplex Automated Genome Engineering, or MAGE, is a genome editing technique that enables scientists to quickly edit an organism’s DNA to produce multiple changes across the genome. In 2009, two genetic researchers at the Wyss Institute at Harvard Medical School in Boston, Massachusetts, Harris Wang and George Church, developed the technology during a time when researchers could only edit one site in an organism’s genome at a time. Wang and Church called MAGE a form of accelerated evolution because it creates different cells with many variations of the same original genome over multiple generations. MAGE made genome editing much faster, cheaper, and easier for genetic researchers to create organisms with novel functions that they can use for a variety of purposes, such as making chemicals and medicine, developing biofuels, or further studying and understanding the genes that can cause harmful mutations in humans.

Created2020-12-10