This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 46
Filtering by

Clear all filters

173927-Thumbnail Image.png
Description

Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The

Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The primitive streak defines the axis of an embryo and is capable of inducing the differentiation of various tissues in a developing embryo during gastrulation. In this experiment Waddington was, in fact, able to induce neural differentiation. Waddington noted that the tissue is "competent"; for a chick organizer, and by deduction a mammalian organizer must exist. Competence refers to a cell's ability to respond to an inducing signal, which is temporally limited to certain developmental stages. Waddington's initial work laid the foundation for many decades of research to follow, including further experiments by Waddington with the mammalian organizer.

Created2007-10-30
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173940-Thumbnail Image.png
Description

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in the nineteenth century. Huxley spends much of The Cell-Theory on a cell theory proposed in the late 1830s by Matthias Schleiden and Theodor Schwann in Germany. Schleiden and Schwann maintained that the cell was the most fundamental unit of life and that the nucleus was the most significant cellular component. Huxley, instead, promoted an epigenetic theory of the cell, for which properties of life emerge from the outer cytoplasm, cell membrane, and wall (the periplast), as opposed to the inner contents of the cell, including the nucleus (the endoplast). Huxley's arguments in The Cell-Theory influenced future scientists about the role of epigenetic processes in embryology and development.

Created2013-12-12
173880-Thumbnail Image.png
Description

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the li

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.

Created2012-10-17
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173230-Thumbnail Image.png
Description

In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already

In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types. Gurdon's experiment disproved the theory that differentiated cells could not be undifferentiated or dedifferentiated into a new type of differentiated cell. Gurdon's experiment demonstrated nuclear transplantation, also called cloning, using differentiated cells.

Created2017-03-16
173301-Thumbnail Image.png
Description

Gattaca is a 1997 science fiction film produced in the US that depicts a future society that uses reproductive technology and genetic engineering in order to produce genetically enhanced human beings. By selectively choosing certain genes, scientists and physicians ensure that individuals born using reproductive technologies have desirable physical and

Gattaca is a 1997 science fiction film produced in the US that depicts a future society that uses reproductive technology and genetic engineering in order to produce genetically enhanced human beings. By selectively choosing certain genes, scientists and physicians ensure that individuals born using reproductive technologies have desirable physical and psychological traits and prevent undesirable traits. The film tells a story of Vincent Freeman, a man conceived without the aid of reproductive technology, who works to overcome his genetic disadvantages compared to his enhanced counterparts in order to achieve his dream of a career in space travel. The film was directed and written by Andrew Niccol and released by Columbia Pictures in Culver City, California, on 24 October 1997. Gattaca addresses the ethical uses of biotechnology, gene manipulation, and genetic engineering, and the film helps illustrate the debate over human genetic engineering research and implications.

Created2017-02-09
173359-Thumbnail Image.png
Description

In the early 2000s, Sabata Martino and a team of researchers in Italy and Germany showed that they could reduce the symptoms of Tay-Sachs in afflicted mice by injecting them with a virus that infected their cells with a gene they lacked. Tay-Sachs disease is a fatal degenerative disorder that

In the early 2000s, Sabata Martino and a team of researchers in Italy and Germany showed that they could reduce the symptoms of Tay-Sachs in afflicted mice by injecting them with a virus that infected their cells with a gene they lacked. Tay-Sachs disease is a fatal degenerative disorder that occurs in infants and causes rapid motor and mental impairment, leading to death at the ages of three to five. In gene therapy, researchers insert normal genes into cells that have missing or defective genes in order to correct genetic disorders. The team created a virus that coded for a specific gene missing in mice with Tay-Sachs. That missing gene is called hexosaminidase subunit alpha (HEXA). Martino and the team injected the virus into the brains of mice with Tay-Sachs in attempt to restore Hexa enzymatic function in the brain and spinal cord (central nervous system).

Created2017-02-21
173119-Thumbnail Image.png
Description

The goal of this research project was to examine how different messaging techniques, and especially expressions of emotionality surrounding the loss and recovery of biodiversity, can differently influence public attitudes about conservation and the environment. This question was explored using the case of de-extinction, an emerging and controversial conservation technology.

The goal of this research project was to examine how different messaging techniques, and especially expressions of emotionality surrounding the loss and recovery of biodiversity, can differently influence public attitudes about conservation and the environment. This question was explored using the case of de-extinction, an emerging and controversial conservation technology. De-extinction claims to “resurrect” extinct species, challenging widely held notions of extinction as permanent. Yet seeing extinction as reversible may shift how people feel about biodiversity loss and our moral responsibility to stop it.

Created2021-11-30
Description

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists
transplant into eggs after removing their nucleuses (enucleated eggs).
Therefore, in SCNT, scientists replace the nucleus in an egg cell
with the nucleus from a somatic cell.

Created2014-11-04