This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

173440-Thumbnail Image.png
Description

In 2015, Junjiu Huang and his colleagues reported their attempt to enable CRISPR/cas 9-mediated gene editing in nonviable human zygotes for the first time at Sun Yat-Sen University in Guangzhou, China. Their article, CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes, was published in Protein and Cell. Nonviable zygotes are

In 2015, Junjiu Huang and his colleagues reported their attempt to enable CRISPR/cas 9-mediated gene editing in nonviable human zygotes for the first time at Sun Yat-Sen University in Guangzhou, China. Their article, CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes, was published in Protein and Cell. Nonviable zygotes are sperm-fertilized eggs that cannot develop into a fetus. Researchers previously developed the CRISPR/cas 9 gene editing tool, which is a system that originated from bacteria as a defense mechanism against viruses. In their article, Huang and his team demonstrate that CRISPR/cas-9 gene editing can be used to correct a mutation in zygotes, or sperm-fertilized egg cells. However, they report that using CRISPR/cas 9 to edit those nonviable human zygotes led to off-target changes and, therefore, to unintended mutations in the human genome. Before Huang and his colleagues' experiment, CRISPR/cas 9 had never been used on human zygotes. In their article, Huang and his colleagues demonstrated the need to improve CRISPR/cas 9 gene editing accuracy before using it for gene therapy to treat and correct genetic diseases in humans.

Created2017-11-08
173446-Thumbnail Image.png
Description

David Baltimore studied viruses and the immune system in the US during the twentieth century. In 1975, Baltimore was awarded the Nobel Prize in Physiology or Medicine for discovering reverse transcriptase, the enzyme used to transfer information from RNA to DNA. The discovery of reverse transcriptase contradicted the central dogma

David Baltimore studied viruses and the immune system in the US during the twentieth century. In 1975, Baltimore was awarded the Nobel Prize in Physiology or Medicine for discovering reverse transcriptase, the enzyme used to transfer information from RNA to DNA. The discovery of reverse transcriptase contradicted the central dogma of biology at the time, which stated that the transfer of information was unidirectional from DNA, RNA, to protein. Baltimore’s research on reverse transcriptase led to the discovery of retroviruses, which accelerated the development of treatments for human immunodeficiency virus or HIV and cancer vaccines. Baltimore also influenced public policy and opinion on genetic engineering. In 1975, he helped organize the Asilomar Conference in Pacific Grove, California, which discussed the regulation of recombinant DNA or the DNA created using multiple sources of genetic material. Baltimore’s research demonstrated how retroviruses replicate and infect cells, and his influence on the Asilomar Conference on Recombinant DNA has guided discussions about regulating biotechnology.

Created2017-12-27
173447-Thumbnail Image.png
Description

In 2007, Dennis Lo and his colleagues used digital polymerase chain reaction or PCR to detect trisomy 21 in maternal blood, validating the method as a means to detect fetal chromosomal aneuploidies, or an abnormal number of chromosomes in a cell. The team conducted their research at the Chinese University

In 2007, Dennis Lo and his colleagues used digital polymerase chain reaction or PCR to detect trisomy 21 in maternal blood, validating the method as a means to detect fetal chromosomal aneuploidies, or an abnormal number of chromosomes in a cell. The team conducted their research at the Chinese University of Hong Kong in Hong Kong, Hong Kong, and at the Boston University in Boston, Massachusetts. Because small amounts of fetal DNA appear in maternal blood during pregnancy, Lo and his team hypothesized that they could detect fetal chromosomal aneuploidy trisomy 21, or Down’s syndrome, in a sample of maternal blood. The group diagnosed Down’s syndrome in unborn fetuses by first taking a maternal blood sample, then amplifying the small amounts of fetal DNA in the maternal blood using digital PCR, and applying two genetic methods to that sample. Lo and his colleagues’ experiment demonstrated the accuracy of a novel, noninvasive method for fetal chromosomal aneuploidy testing that can enable people to make informed decisions about their pregnancies.

Created2017-11-08