This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 61
Filtering by

Clear all filters

173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173935-Thumbnail Image.png
Description

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks.

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity. Unlike other tissues, enamel does not remodel after it forms, leaving those microstructures intact after deposition. Cross-striations and striae of Retzius thus provide evidence of the timing and processes of tooth development, and they indicate how organisms in a lineage differently grow and develop across generations. Researchers have examined those microstructures to investigate human evolution.

Created2013-01-31
173880-Thumbnail Image.png
Description

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the li

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.

Created2012-10-17
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173386-Thumbnail Image.png
Description

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers initially called those cells Evans-Kaufman cells. In 1992, Kaufman published The Atlas of Mouse Development, a book that included photographs of mice development and mice organs over time. Kaufman also wrote books about UK medical history, phrenology, or the study of craniums as an indicator of character or mental ability, and medical teaching in the eighteenth and nineteenth centuries. Kaufman’s anatomical records and experiments in mouse development contributed to genetic engineering, embryology, and anatomy.

Created2018-08-31
173427-Thumbnail Image.png
Description

The San Diego Zoo Institute for Conservation Research (SDZICR) in San Diego, California, is a research organization that works to generate, use, and share information for the conservation of wildlife and their habitats. In 1975, Kurt Benirschke, a researcher at the University of California, San Diego (UCSD) who studied human

The San Diego Zoo Institute for Conservation Research (SDZICR) in San Diego, California, is a research organization that works to generate, use, and share information for the conservation of wildlife and their habitats. In 1975, Kurt Benirschke, a researcher at the University of California, San Diego (UCSD) who studied human and animal reproduction, and Charles Bieler, the director of the San Diego Zoo, collaborated to form the Center for Reproduction of Endangered Species (CRES). In 2009, the San Diego Zoo announced the creation of SDZICR, which expanded and replaced CRES, to provide central organization and management of scientific programs at the San Diego Zoo. By 2004, Allison Alberts was the director of research and for more than a decade oversaw the SDZICR's many research initiatives, including the collection and storage of genetic and reproductive information of rare and endangered animal and plant species.

Created2017-06-12
173229-Thumbnail Image.png
Description

In the late 1990s researchers Yuk Ming Dennis Lo and his colleagues isolated fetal DNA extracted from pregnant woman’s blood. The technique enabled for more efficient and less invasive diagnoses of genetic abnormalities in fetuses, such as having too many copies of chromosomes. Lo’s team published their results in 1997’s

In the late 1990s researchers Yuk Ming Dennis Lo and his colleagues isolated fetal DNA extracted from pregnant woman’s blood. The technique enabled for more efficient and less invasive diagnoses of genetic abnormalities in fetuses, such as having too many copies of chromosomes. Lo’s team published their results in 1997’s “Presence of Fetal DNA in Maternal Plasma and Serum.” The results led to developments of clinical tests that can access fetal genetic information and detect genetic abnormalities before birth without the significant risks that can potentially harm the fetus associated with invasive genetic testing techniques.

Created2017-03-07
173241-Thumbnail Image.png
Description

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive

John Hunter studied human reproductive anatomy, and in eighteenth century England, performed one of the earliest described cases of artificial insemination. Hunter dissected thousands of animals and human cadavers to study the structures and functions of organ systems. Much of his anatomical studies focused on the circulatory, digestive, and reproductive systems. He helped to describe the exchange of blood between pregnant women and their fetuses. Hunter also housed various natural collections, as well as thousands of preserved specimens from greater than thirty years of anatomy work. Hunter's work developed practices in reproductive and reparative surgery and furthered the study of human anatomy and physiology.

Created2017-02-17
173243-Thumbnail Image.png
Description

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a model for nucleic acids, including DNA, that consisted of three nucleic acid strands wound together in a triple helix. “Nucleic Acids” was published in Proceedings of the National Academy of Sciences shortly after scientists came to the consensus that genes, the biological factors that control how organisms develop, contained DNA. Though scientists proved Pauling and Corey’s model incorrect, “Nucleic Acids” helped scientists understand DNA’s structure and function as genetic material.

Created2019-08-26