This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

173696-Thumbnail Image.png
Description

After becoming chief pathologist at the University of Wisconsin-Madison Wisconsin Regional Primate Center in 1995, James A. Thomson began his pioneering work in deriving embryonic stem cells from isolated embryos. That same year, Thomson published his first paper, "Isolation of a Primate Embryonic Stem Cell Line," in Proceedings of the

After becoming chief pathologist at the University of Wisconsin-Madison Wisconsin Regional Primate Center in 1995, James A. Thomson began his pioneering work in deriving embryonic stem cells from isolated embryos. That same year, Thomson published his first paper, "Isolation of a Primate Embryonic Stem Cell Line," in Proceedings of the National Academy of Sciences of the United States of America, detailing the first derivation of primate embryonic stem cells. In the following years, Thomson and his team of scientists - Joseph Itskovitz-Eldor, Sander S. Shapiro, Michelle A. Waknitz, Jennifer J. Swiergiel, Vivienne S. Marshall, and Jeffry M. Jones - advanced their work with embryonic stem cells, eventually isolating and culturing human embryonic stem cells. Their work with human embryos was reported in the 1998 Nature article "Embryonic Stem Cell Lines Derived from Human Blastocysts."

Created2011-02-01
173555-Thumbnail Image.png
Description

Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term

Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term "embryo" applies to a fertilized egg from the beginning of division up to the end of the eighth week of gestation, when the embryo becomes a fetus. Between fertilization and the eighth week of gestation, the embryo undergoes multiple cell divisions. At the eight-cell stage, roughly the third day of division, all eight cells are considered totipotent, which means the cell has the capability of becoming a fully developed human being. By day four, cells begin to separate and form a spherical layer which eventually becomes the placenta and tissue that support the development of the future fetus. A mass of about thirty cells, called the inner cell mass, forms at one end of the sphere and eventually becomes the body. When the sphere and inner cell mass are fully formed, around day 5, the pre-implantation embryo is referred to as a blastocyst. At this point the cells in the inner cell mass have not yet differentiated, but have the ability to develop into any specialized cell type that makes up the body. This property is known as pluripotency. As of 2009, embryonic stem cells refer to pluripotent cells that are generally derived from the inner cell mass of blastocysts.

Created2010-09-13