This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

173306-Thumbnail Image.png
Description

Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases

Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases with age in contrast to most cell of most other types. Telomeres are the protective caps at the end of DNA strands that preserve chromosomal integrity and contribute to DNA length and stability. In most cells, telomeres shorten with each cell division due to incomplete replication, though the enzyme telomerase functions in some cell lines that undergo repetitive divisions to replenish any lost length and to prevent degradation. Cells, and therefore organisms, with short telomeres are more susceptible to mutations and genetic diseases. While TL increases in a subset of sperm cells and longer telomeres may prevent early disintegration of DNA, it may also prevent natural mechanisms of apoptosis, or cell death, from occurring in abnormal sperm.

Created2017-02-07
173379-Thumbnail Image.png
Description

Leon Chesley published Hypertensive Disorders in Pregnancy in 1978 to outline major and common complications that occur during pregnancy and manifest in abnormally high blood pressures in pregnant women. The book was published by Appleton-Century-Crofts in New York, New York. Chesley compiled his book as a tool for practicing obstetricians

Leon Chesley published Hypertensive Disorders in Pregnancy in 1978 to outline major and common complications that occur during pregnancy and manifest in abnormally high blood pressures in pregnant women. The book was published by Appleton-Century-Crofts in New York, New York. Chesley compiled his book as a tool for practicing obstetricians and teachers. The book focuses on preeclampsia and eclampsia, but it also describes other common and rare hypertensive diseases and disorders of pregnancy and discusses their histories, diagnoses, management plans, pathologies, and immediate and remote prognoses for mothers and fetuses. Doctors used the book and all subsequent editions to help diagnose and manage complications during pregnancy and to avoid deaths for pregnant women and fetuses.

Created2017-04-27
172869-Thumbnail Image.png
Description

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or

The Hayflick Limit is a concept that helps to explain the
mechanisms behind cellular aging. The concept states that a normal human
cell can only replicate and divide forty to sixty times before it
cannot divide anymore, and will break down by programmed cell death
or apoptosis. The concept of the Hayflick Limit revised Alexis
Carrel's earlier theory, which stated that cells can replicate
themselves infinitely. Leonard Hayflick developed the concept while
at the Wistar Institute in Philadelphia,
Pennsylvania, in 1965. In his 1974 book Intrinsic
Mutagenesis, Frank Macfarlane Burnet named the concept after
Hayflick. The concept of the Hayflick Limit helped scientists study
the effects of cellular aging on human populations from embryonic
development to death, including the discovery of the effects of
shortening repetitive sequences of DNA, called telomeres, on the
ends of chromosomes. Elizabeth Blackburn, Jack Szostak and Carol
Greider received the Nobel Prize in Physiology or Medicine in 2009
for their work on genetic structures related to the Hayflick
Limit.

Created2014-11-14
172878-Thumbnail Image.png
Description

In 2004, a team of researchers at Tufts-New England
Medical Center in Boston, Massachusetts, investigated the fetal
cells that remained in the maternal blood stream after pregnancy.
The results were published in Transfer of Fetal Cells with
Multilineage Potential to Maternal Tissue. The team working on

In 2004, a team of researchers at Tufts-New England
Medical Center in Boston, Massachusetts, investigated the fetal
cells that remained in the maternal blood stream after pregnancy.
The results were published in Transfer of Fetal Cells with
Multilineage Potential to Maternal Tissue. The team working on that
research included Kiarash Khosrotehrani, Kirby L. Johnson, Dong
Hyun Cha, Robert N. Salomon, and Diana W. Bianchi. The researchers
reported that the fetal cells passed to a pregnant woman during
pregnancy could develop into multiple cell types in her organs. They
studied these differentiated fetal cells in a cohort of women
fighting different diseases. The researchers found that the fetal
cells in the women differentiated into different cell types under
the influence of maternal tissues, and that those differentiated
cells concentrated in the tissue surrounding diseased tissues.
According to the team, this response could be a therapeutic response
to the disease in the once pregnant woman. The research indicated the long
lasting effects of pregnancy in a woman's body.

Created2014-11-14
172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172923-Thumbnail Image.png
Description

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling. In 1989, Gregg Morin found that telomerase was present in human cells. In 1996, Woodring Wright and his team examined human embryonic cells and found that telomerase was active in them. Scientists manipulate telomerase in cells to give cells the capacity to replicate infinitely. Telomerase is also necessary for stem cells to replicate themselves and to develop into more specialized cells in embryos and fetuses.

Created2015-03-23