This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 25
Filtering by

Clear all filters

173936-Thumbnail Image.png
Description

In 1868 in England, Charles Darwin proposed his pangenesis theory to describe the units of inheritance between parents and offspring and the processes by which those units control development in offspring. Darwin coined the concept of gemmules, which he said referred to hypothesized minute particles of inheritance thrown off by

In 1868 in England, Charles Darwin proposed his pangenesis theory to describe the units of inheritance between parents and offspring and the processes by which those units control development in offspring. Darwin coined the concept of gemmules, which he said referred to hypothesized minute particles of inheritance thrown off by all cells of the body. The theory suggested that an organism's environment could modify the gemmules in any parts of the body, and that these modified gemmules would congregate in the reproductive organs of parents to be passed on to their offspring. Darwin's theory of pangenesis gradually lost popularity in the 1890s when biologists increasingly abandoned the theory of inheritance of acquired characteristics (IAC), on which the pangenesis theory partially relied. Around the turn of the twentieth century, biologists replaced the theory of pangenesis with germ plasm theory and then with chromosomal theories of inheritance, and they replaced the concept of gemmules with that of genes.

Created2014-07-20
173882-Thumbnail Image.png
Description

The "Humanae Vitae," meaning "Of Human Life" and subtitled "On the Regulation of Birth," was an encyclical promulgated in Rome, Italy, on 25 July 1968 by Pope Paul VI. This encyclical defended and reiterated the Roman Catholic Church's stance on family planning and reproductive issues such as abortion, sterilization,

The "Humanae Vitae," meaning "Of Human Life" and subtitled "On the Regulation of Birth," was an encyclical promulgated in Rome, Italy, on 25 July 1968 by Pope Paul VI. This encyclical defended and reiterated the Roman Catholic Church's stance on family planning and reproductive issues such as abortion, sterilization, and contraception. The document continues to have a controversial reputation today, as its statements regarding birth control strike many Catholics as unreasonable.

Created2007-11-13
173385-Thumbnail Image.png
Description

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena, California. Bridges and Morgan studied heredity in Drosophila, the common

Calvin Blackman Bridges studied chromosomes and heredity in the US throughout the early twentieth century. Bridges performed research with Thomas Hunt Morgan at Columbia University in New York City, New York, and at the California Institute of Technology in Pasadena, California. Bridges and Morgan studied heredity in Drosophila, the common fruit fly. Throughout the early twentieth century, researchers were gathering evidence that genes, or what Gregor Mendel had called the factors that control heredity, are located on chromosomes. At Columbia, Morgan disputed the theory, but in 1916, Calvin Bridges published evidence that, according to Morgan, did much to convince skeptics of that theory. Bridges also established that specific chromosomes function in determining sex in Drosophila.

Created2017-05-19
173388-Thumbnail Image.png
Description

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In

Alfred Henry Sturtevant studied heredity in fruit flies in the US throughout the twentieth century. From 1910 to 1928, Sturtevant worked in Thomas Hunt Morgan’s research lab in New York City, New York. Sturtevant, Morgan, and other researchers established that chromosomes play a role in the inheritance of traits. In 1913, as an undergraduate, Sturtevant created one of the earliest genetic maps of a fruit fly chromosome, which showed the relative positions of genes along the chromosome. At the California Institute of Technology in Pasadena, California, he later created one of the first fate maps, which tracks embryonic cells throughout their development into an adult organism. Sturtevant’s contributions helped scientists explain genetic and cellular processes that affect early organismal development.

Created2017-05-20
173396-Thumbnail Image.png
Description

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that

From 1913 to 1916, Calvin Bridges performed experiments that indicated genes are found on chromosomes. His experiments were a part of his doctoral thesis advised by Thomas Hunt Morgan in New York, New York. In his experiments, Bridges studied Drosophila, the common fruit fly, and by doing so showed that a process called nondisjunction caused chromosomes, under some circumstances, to fail to separate when forming sperm and egg cells. Nondisjunction, as described by Bridges, caused sperm or egg cells to contain abnormal amounts of chromosomes. In some cases, that caused the offspring produced by the sperm or eggs to display traits that they would typically not have. His research on nondisjunction provided evidence that chromosomes carry genetic traits, including those that determine the sex of an organism.

Created2017-05-18
173399-Thumbnail Image.png
Description

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had

In 1910, Thomas Hunt Morgan performed an experiment at Columbia University, in New York City, New York, that helped identify the role chromosomes play in heredity. That year, Morgan was breeding Drosophila, or fruit flies. After observing thousands of fruit fly offspring with red eyes, he obtained one that had white eyes. Morgan began breeding the white-eyed mutant fly and found that in one generation of flies, the trait was only present in males. Through more breeding analysis, Morgan found that the genetic factor controlling eye color in the flies was on the same chromosome that determined sex. That result indicated that eye color and sex were both tied to chromosomes and helped Morgan and colleagues establish that chromosomes carry the genes that allow offspring to inherit traits from their parents.

Created2017-05-22
173402-Thumbnail Image.png
Description

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of Nobel laureate Thomas Hunt Morgan. Sturtevant studied heredity using Drosophila,

In 1913, Alfred Henry Sturtevant published the results of experiments in which he showed how genes are arranged along a chromosome. Sturtevant performed those experiments as an undergraduate at Columbia University, in New York, New York, under the guidance of Nobel laureate Thomas Hunt Morgan. Sturtevant studied heredity using Drosophila, the common fruit fly. In his experiments, Sturtevant determined the relative positions of six genetic factors on a fly’s chromosome by creating a process called gene mapping. Sturtevant’s work on gene mapping inspired later mapping techniques in the twentieth and twenty-first centuries, techniques that helped scientists identify regions of the chromosome that when mutated cause organisms to develop abnormally and to create treatments to cure those kinds of disorders.

Created2017-05-22
173170-Thumbnail Image.png
Description

"Casti Connubii," a papal encyclical given by Pope Pius XI on 31 December 1930, served primarily as a reaffirmation and expansion of the issues discussed in Arcanum, an encyclical written by Pope Leo XIII. It was released to address new threats to marriage and conjugal unity, and indeed is translated

"Casti Connubii," a papal encyclical given by Pope Pius XI on 31 December 1930, served primarily as a reaffirmation and expansion of the issues discussed in Arcanum, an encyclical written by Pope Leo XIII. It was released to address new threats to marriage and conjugal unity, and indeed is translated "On Christian Marriage" or "On Chastity in Marriage." The document explores the meaning of Christian marriage and emphasizes its threefold purpose as borrowed from St. Augustine: to produce offspring, to grow in conjugal faith, and to show benefit from the sacrament. It begins by exploring the nature of marriage, followed by a discussion of its advantages for individuals and societies, erroneous but common beliefs about marriage, threats to pure marriage, and finally how to address them. Included in the threats to pure marriage is that of the growing popularity of contraception and abortive procedures, at which point Pope Pius XI elaborates on the Church' s statement that life begins at conception.

Created2009-01-20
172907-Thumbnail Image.png
Description

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the
germ plasm, a substance in the germ cell that carries hereditary information. The
Germ-Plasm compiled Weismann's theoretical work and analyses of
other biologists' experimental work in the 1880s, and it provided a
framework to study development, evolution and heredity. Weismann
anticipated that the germ-plasm theory would enable researchers to
investigate the functions and material of hereditary substances.

Created2015-01-26
172827-Thumbnail Image.png
Description

Petr Kropotkin proposed the theory of Pleistocene ice age, alternative theories of evolution based on embryology, and he advocated anarchist and communist social doctrines in Europe during the nineteenth and twentieth centuries. He traveled in eastern Siberia and Manchuria from 1863 until 1867, and his subsequent publications about that area's

Petr Kropotkin proposed the theory of Pleistocene ice age, alternative theories of evolution based on embryology, and he advocated anarchist and communist social doctrines in Europe during the nineteenth and twentieth centuries. He traveled in eastern Siberia and Manchuria from 1863 until 1867, and his subsequent publications about that area's geography became authoritative until the middle of the twentieth century. Kropotkin argued that his geographic and geologic observations in Asia, Finland, Sweden, and Canada, supported the theory of Pleistocene continental glaciation, often called the ice age. He was one of the first to study the ancient geography and climate of the Quaternary period, which spans from 2.5 million years ago until the present. Around the turn of the nineteenth century, Kropotkin offered what he said were complementary amendments to Charles Darwin's 1859 theory of evolution by natural selection. Kropotkin employed a variety of arguments from natural history, embryology, and geography to support his theory of mutual aid, which he argued was a positive mechanistic addition to the theory of evolution.

Created2015-06-01