This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

173882-Thumbnail Image.png
Description

The "Humanae Vitae," meaning "Of Human Life" and subtitled "On the Regulation of Birth," was an encyclical promulgated in Rome, Italy, on 25 July 1968 by Pope Paul VI. This encyclical defended and reiterated the Roman Catholic Church's stance on family planning and reproductive issues such as abortion, sterilization,

The "Humanae Vitae," meaning "Of Human Life" and subtitled "On the Regulation of Birth," was an encyclical promulgated in Rome, Italy, on 25 July 1968 by Pope Paul VI. This encyclical defended and reiterated the Roman Catholic Church's stance on family planning and reproductive issues such as abortion, sterilization, and contraception. The document continues to have a controversial reputation today, as its statements regarding birth control strike many Catholics as unreasonable.

Created2007-11-13
173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08
173170-Thumbnail Image.png
Description

"Casti Connubii," a papal encyclical given by Pope Pius XI on 31 December 1930, served primarily as a reaffirmation and expansion of the issues discussed in Arcanum, an encyclical written by Pope Leo XIII. It was released to address new threats to marriage and conjugal unity, and indeed is translated

"Casti Connubii," a papal encyclical given by Pope Pius XI on 31 December 1930, served primarily as a reaffirmation and expansion of the issues discussed in Arcanum, an encyclical written by Pope Leo XIII. It was released to address new threats to marriage and conjugal unity, and indeed is translated "On Christian Marriage" or "On Chastity in Marriage." The document explores the meaning of Christian marriage and emphasizes its threefold purpose as borrowed from St. Augustine: to produce offspring, to grow in conjugal faith, and to show benefit from the sacrament. It begins by exploring the nature of marriage, followed by a discussion of its advantages for individuals and societies, erroneous but common beliefs about marriage, threats to pure marriage, and finally how to address them. Included in the threats to pure marriage is that of the growing popularity of contraception and abortive procedures, at which point Pope Pius XI elaborates on the Church' s statement that life begins at conception.

Created2009-01-20
Description

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests. Pregnant women who take Thalidomide are at grater than normal risk for spontaneous abortion and for giving birth to children with developmental anomalies such as shortened, absent, or extra limbs, as well as a variety of heart, ear, and internal organ defects. The failure of rodent models to inform scientists of Thalidomide's teratogenicity in humans ignited debate about the proper use of cross-species testing during drug development.

Created2014-03-07
Description

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms. Around two billion years ago, mitochondria took up residence inside larger cells, in a process called endosymbiosis, becoming functional parts of those cells. Within each mitochondrion is the mitochondrial DNA (mtDNA), which is different from the DNA in the cell's nucleus (nDNA). Organisms inherit their mitochondria only from their mothers via egg cells (oocytes). Mitochondria contribute to the development of oocytes, the release of the oocyte from the ovary (ovulation), the union of oocyte and sperm (fertilization), all stages of embryo formation (embryogenesis), and growth of the embryo after fertilization.

Created2014-07-05
172716-Thumbnail Image.png
Description

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.

Created2013-09-17
173021-Thumbnail Image.png
Description

In 2007, Françoise Baylis and Jason Scott Robert published “Part-Human Chimeras: Worrying the Facts, Probing the Ethics” in The American Journal of Bioethics. Within their article, hereafter “Part-Human Chimeras,” the authors offer corrections on “Thinking About the Human Neuron Mouse,” a report published in The American Journal of Bioethics in

In 2007, Françoise Baylis and Jason Scott Robert published “Part-Human Chimeras: Worrying the Facts, Probing the Ethics” in The American Journal of Bioethics. Within their article, hereafter “Part-Human Chimeras,” the authors offer corrections on “Thinking About the Human Neuron Mouse,” a report published in The American Journal of Bioethics in 2007 by Henry Greely, Mildred K. Cho, Linda F. Hogle, and Debra M. Satz, which discussed the debate on the ethics of creating part-human chimeras. Chimeras are organisms that contain two or more genetically distinct cell lines. Both publications discuss chimeras with DNA from different species, specifically in response to studies in which scientists injected human brain cells into mice. “Part-Human Chimeras,” contributes to a chain of ethical and scientific discussion that occurred in the mid-2000s on whether people should be able to conduct research on chimeras, especially in embryos.

Created2021-06-19
173024-Thumbnail Image.png
Description

In 2006, bioethicist Jason Scott Robert published “The Science and Ethics of Making Part-Human Animals in Stem Cell Biology” in The FASEB Journal. There, he reviews the scientific and ethical justifications and restrictions on creating part-human animals. Robert describes part-human animals, otherwise known as chimeras, as those resulting from the

In 2006, bioethicist Jason Scott Robert published “The Science and Ethics of Making Part-Human Animals in Stem Cell Biology” in The FASEB Journal. There, he reviews the scientific and ethical justifications and restrictions on creating part-human animals. Robert describes part-human animals, otherwise known as chimeras, as those resulting from the intentional combination of human and nonhuman cells, tissues, or organs at any stage of development. He specifically criticizes restrictions against creating part-human animals made by the National Academy of Sciences, or NAS, in 2005, arguing that while they ensure that such research is morally justifiable, they might limit scientists from conducting useful science using part-human animals or entities. Robert challenges the moral rationales behind prohibiting chimera research, arguing that they may impede scientists from conducting research that could have important benefits to biology and medicine, and suggests how to balance the conflicting moral and scientific needs of such science.

Created2021-05-25
172863-Thumbnail Image.png
Description

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements

Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists. Francois Jacob and Jacques Monod used lysogenic bacteria to develop their operon model of gene regulation, to investigate the cellular regulatory mechanisms of the lysogenic life cycle, and to infer the process of cellular differentiation in the development of more complex eukaryotes.

Created2014-10-10
Description

When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not

When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes. Chimeras can occur when two independent organisms fuse at a cellular level to form one organism, or when a population of cells is transferred from one organism to another. Chimeras created in laboratories have helped scientists to identify developmental mechanisms and processes across species. Some experiments involving chimeras aim to provide further knowledge of immune reactions against disease or to create animal models to understand human disease.

Created2014-11-25