This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 10 of 40
Filtering by

Clear all filters

172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172900-Thumbnail Image.png
Description

In the early twentieth century, Paul Kammerer conducted a series of experiments to demonstrate that organisms could transmit characteristics acquired in their lifetimes to their offspring. In his 1809 publication, zoologist Jean-Baptiste Lamarck had hypothesized that living beings can inherit features their parents or ancestors acquired throughout life. By breeding

In the early twentieth century, Paul Kammerer conducted a series of experiments to demonstrate that organisms could transmit characteristics acquired in their lifetimes to their offspring. In his 1809 publication, zoologist Jean-Baptiste Lamarck had hypothesized that living beings can inherit features their parents or ancestors acquired throughout life. By breeding salamanders, as well as frogs and other organisms, Kammerer tested Lamarck's hypothesis in an attempt to provide evidence for Lamarck's theory of the inheritance of acquired characteristics. In particular, Kammerer argued that the inheritance of acquired characteristics caused species to evolve, and he claimed that his results provided an explanation for evolutionary processes through developmental phenomena.

Created2014-12-30
172901-Thumbnail Image.png
Description

In the first decade of the twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, conducted research on developmental mechanisms, including a series of breeding experiments on toads (Alytes obstetricans). Kammerer claimed that his results demonstrated that organisms could transmit acquired characteristics to their offspring.

In the first decade of the twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, conducted research on developmental mechanisms, including a series of breeding experiments on toads (Alytes obstetricans). Kammerer claimed that his results demonstrated that organisms could transmit acquired characteristics to their offspring. To explain how evolution occurred, biologist Jean-Baptiste Lamarck in France suggested in his 1809 book that offspring inherited the features their ancestors acquired throughout the lives of those ancestors, a process termed the inheritance of acquired characteristics. Kammerer conducted breeding experiments to test the theory of inheritance of acquired characteristics, which he said described the mechanics of evolution. Additionally, Kammerer's experiments aimed at explaining how development shaped evolutionary processes.

Created2014-12-30
172907-Thumbnail Image.png
Description

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the
germ plasm, a substance in the germ cell that carries hereditary information. The
Germ-Plasm compiled Weismann's theoretical work and analyses of
other biologists' experimental work in the 1880s, and it provided a
framework to study development, evolution and heredity. Weismann
anticipated that the germ-plasm theory would enable researchers to
investigate the functions and material of hereditary substances.

Created2015-01-26
172908-Thumbnail Image.png
Description

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts and other organisms at a time when Charles Darwin's 1859 theory of evolution lacked evidence to explain how offspring inherited traits from their parents. In 1809, zoologist Jean-Baptiste Lamarck in France theorized that living beings can inherit the features their parents or ancestors acquired during those ancestor's lifetime, a theory called the inheritance of acquired characteristics. Kammerer attempted to provide evidence for the theory of inheritance of acquired characteristics, which constituted, he argued, the mechanics of evolution. Kammerer claimed that his results could explain evolutionary processes through developmental phenomena.

Created2015-04-13
172911-Thumbnail Image.png
Description

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of
DNA at the ends of chromosomes that protect chromosomes from tangling, and they provide some protection from mutations. Greider also studied telomerase, an enzyme that repairs telomeres. Without telomeres, chromosomes are subject to mutations that can lead to
cell death, and without telomerase, cells might not reproduce fast enough during embryonic development. Greider's research on telomeres helped scientists explain how chromosomes function within cells.

ContributorsBartlett, Zane (Author) / Wagoner, Nevada (Editor)
Created2015-01-26
172927-Thumbnail Image.png
Description

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

Created2015-05-28
173209-Thumbnail Image.png
Description

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Created2017-02-09
173179-Thumbnail Image.png
Description

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.

Created2017-06-23
173204-Thumbnail Image.png
Description

Kurt Benirschke studied cells, placentas, and endangered species in Germany and the US during the twentieth century. Benirschke was professor at the University of California in San Diego, California, and a director of the research department at the San Diego Zoo in San Diego, California. He also helped form the

Kurt Benirschke studied cells, placentas, and endangered species in Germany and the US during the twentieth century. Benirschke was professor at the University of California in San Diego, California, and a director of the research department at the San Diego Zoo in San Diego, California. He also helped form the research department of the San Diego Zoo and its sister organization, the Center for Reproduction of Endangered Species. Benirschke contributed to the field of embryology through his work on human and animal reproduction, including work on human placentas and birth defects, through work on the structure of chromosomes, and through work on the reproduction and conservation of endangered species.

Created2016-04-26