This collection includes articles published in the Embryo Project Encyclopedia.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
172807-Thumbnail Image.png
Description

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium

The endothelium is the layer of cells lining the blood vessels in animals. It weighs more than one kilogram in adult humans, and it covers a surface area of 4000 to 7000 square meters. The endothelium is the cellular interface between the circulating blood and underlying tissue. As the medium between these two sets of tissues, endothelium is part of many normal and disease processes throughout the body. The endothelium responds to signals from its surrounding environment to help regulate functions like the resistance that blood vessels need to pump blood through the body (vasomotor tone), the policing of substances trying to enter or exit the blood vessel (blood vessel permeability), and the ability of blood to clot (hemostasis). In addition to diseases like atherosclerosis, endothelium has been indicated as a component in pathologies like cancer, asthma, diabetes, hepatitis, multiple sclerosis, and sepsis. The shape, size, and appearance of endothelial cells, called their phenotypes, vary depending upon which part of the body the cells are from, a property called phenotypic heterogeneity. The endothelium, its properties, and its responses to stimuli are governed largely by the local environment of the cells.

Created2014-01-28
172811-Thumbnail Image.png
Description

Early 1990s research conducted by Peter Koopman, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge, showed that chromosomally female (XX) mice embryos can develop as male with the addition of a genetic fragment from the Y chromosome of male mice. The genetic fragment contained a

Early 1990s research conducted by Peter Koopman, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge, showed that chromosomally female (XX) mice embryos can develop as male with the addition of a genetic fragment from the Y chromosome of male mice. The genetic fragment contained a segment of the mouse Sry gene, which is analogous to the human SRY gene. The researchers sought to identify Sry gene as the gene that produced the testis determining factor protein (Tdf protein in mice or TDF protein in humans), which initiates the formation of testis. Koopman's team published their results in 1991 in Male Development of Chromosomally Female Mice Transgenic for Sry gene. Their results showed that Sry gene partly determines the sex of an embryo and is the only gene on the Y chromosome necessary for initiation of male development in mice.

Created2014-01-28
172755-Thumbnail Image.png
Description

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson

Francis Harry Compton Crick, who co-discovered the structure of deoxyribonucleic acid (DNA) in 1953 in Cambridge, England, also developed The Central Dogma of Molecular Biology, and further clarified the relationship between nucleotides and protein synthesis. Crick received the Nobel Prize in Physiology or Medicine that he shared with James Watson and Maurice Wilkins in 1962 for their discovery of the molecular structure of DNA. Crick's results on the genetic material found in all living organisms advanced theories of inheritance and spurred further studies into the field of genetics and embryology.

Created2013-11-01