The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 29
Filtering by

Clear all filters

Description

Johann Gregor Mendel studied patterns of trait inheritance in plants during the nineteenth century. Mendel, an Augustinian monk, conducted experiments on pea plants at St. Thomas’ Abbey in what is now Brno, Czech Republic. Twentieth century scientists used Mendel’s recorded observations to create theories about genetics.

Created2022-01-13
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173286-Thumbnail Image.png
Description

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same! Unfortunately, our regenerative capacities are limited to hair, nails, and skin, while the liver and a few other tissues display more restricted regenerative abilities. What if we could grow back lost limbs, or damaged organs? This question has inspired many stories, dating back to Greek mythology, wherein Prometheus was doomed to regenerate his liver after it had been devoured by birds. Regeneration has permeated many imaginations; it has appeared in many literary and religious texts, and has also provoked much interest from the scientific community.

Created2009-06-10
173192-Thumbnail Image.png
Description

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch.

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch. He grew up in a wealthy merchant family in Hamburg, Germany, where he was educated at the humanistic Gymnasium Gelehrtenschule des Johanneums that had been founded by a friend of Martin Luther. In 1886 he spent two summers studying with Weismann at the University of Freiburg and then entered the University of Jena, where he received his doctorate in 1889 with a study of hydroid colonies. By 1890 Driesch had lost interest in Haeckel's popular phylogenetic approach to zoology and instead focused on experimental embryology.

Created2007-11-01
173195-Thumbnail Image.png
Description

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen,

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen, the unusual organism. He therefore decided to create a film to present at seminars in order to introduce his object of study; the time-lapsed film captivated audiences, indeed Bonner has described that the film "always stole the show." Bonner began working in the biology department at Princeton University in 1947, and although Princeton appears in the opening title, Bonner actually made the film for his senior thesis as an undergraduate at Harvard University with some early assistance from Frank Smith, a photographer. Although unsure of name of the device that was used for filming, he has described it as "the most amazing antique contraption that belonged to my professor, Wm. H. Weston. It consisted of a gigantic and VERY heavy set of brass gears that had numerous possible speeds that turned a crank on the side of an old 16 mm box camera that pointed into the ocular of a microscope. The electric motor that propelled it made such vibrations that the whole apparatus had to be on a separate table and not touching the microscope."

Created2008-05-02
173079-Thumbnail Image.png
Description

In 2017, Julie Carré, Nicolas Gatimel, Jessika Moreau, Jean Parinaud, and Roger Léandri published “Does Air Pollution Play a Role in Infertility?: a Systematic Review,” hereafter “Does Air Pollution Play a Role,” in the journal Environmental Health. The authors completed a systematic literature review to investigate the effects of air

In 2017, Julie Carré, Nicolas Gatimel, Jessika Moreau, Jean Parinaud, and Roger Léandri published “Does Air Pollution Play a Role in Infertility?: a Systematic Review,” hereafter “Does Air Pollution Play a Role,” in the journal Environmental Health. The authors completed a systematic literature review to investigate the effects of air pollutants on fertility in exposed populations. Since air quality has an impact on overall health as well as on reproductive function, the authors sought to increase the awareness of the importance of environmental protection issues among the general public and the authorities. The article “Does Air Pollution Play a Role” provided the foundation for further research on how air pollution can contribute to low reproductive capacity in areas with high exposure.

Created2021-08-02
173102-Thumbnail Image.png
Description

In September 2003, Robert L. Goldenberg and Cortney Thompson published the article “The Infectious Origins of Stillbirth” in the American Journal of Obstetrics and Gynecology. In the article, the authors conducted a literature review of articles from the US National Library of Medicine database to review the relationship between perinatal

In September 2003, Robert L. Goldenberg and Cortney Thompson published the article “The Infectious Origins of Stillbirth” in the American Journal of Obstetrics and Gynecology. In the article, the authors conducted a literature review of articles from the US National Library of Medicine database to review the relationship between perinatal infections, which are infections around the time of birth, and the occurrence of stillbirth. Stillbirth is the death of a fetus in the uterus after at least twenty weeks of pregnancy. Infectious disease can cause or increase the risk of stillbirth in several ways, by causing illness in the pregnant person, damaging the placenta, or directly infecting the fetus. Infectious agents can be viruses, bacteria, or protozoa. Rates of infectious disease and stillbirth are both higher in developing than in developed countries, and the authors state that stillbirth due to infectious disease is also higher. “The Infectious Origins of Stillbirth” provides a comprehensive review of the information available on how infections can lead to stillbirth, providing a foundation for further research.

Created2022-03-23
173679-Thumbnail Image.png
Description

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia. Child observed that regeneration occurred in a graded process along the axis of the organism, with the characteristics of each physiological process seemingly determined by its location along the axis. To explain these observations, Child posited the existence of physiological factors working to guide the regenerative process. He was convinced that these differences along the gradients could be explained quantitatively.

Created2009-08-01
173014-Thumbnail Image.png
Description

In 2002, after applying for government assistance in the state of Washington, Lydia Fairchild was told that her two children were not a genetic match with her and that therefore, biologically, she could not be their mother. Researchers later determined that the genetic mismatch was due to chimerism, a condition

In 2002, after applying for government assistance in the state of Washington, Lydia Fairchild was told that her two children were not a genetic match with her and that therefore, biologically, she could not be their mother. Researchers later determined that the genetic mismatch was due to chimerism, a condition in which two genetically distinct cell lines are present in one body. The state accused Fairchild of fraud and filed a lawsuit against her. Following evidence from another case of chimerism documented in The New England Journal of Medicine in a woman named Karen Keegan, Fairchild was able to secure legal counsel and establish evidence of her biological maternity. A cervical swab eventually revealed Fairchild’s second distinct cell line, showing that she had not genetically matched her children because she was a chimera. Fairchild’s case was one of the first public accounts of chimerism and has been used as an example in subsequent discussions about the validity and reliability of DNA evidence in legal proceedings within the United States.

Created2021-06-01