The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 51
Filtering by

Clear all filters

175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21
Description

“Test-tube baby” is a term used to refer to a baby produced through artificial insemination or in vitro fertilization, also called IVF. During artificial insemination, a physician injects carefully selected sperm into a women’s uterus to fertilize her eggs. During IVF, a trained professional harvests eggs from a female donor.

“Test-tube baby” is a term used to refer to a baby produced through artificial insemination or in vitro fertilization, also called IVF. During artificial insemination, a physician injects carefully selected sperm into a women’s uterus to fertilize her eggs. During IVF, a trained professional harvests eggs from a female donor. Those eggs are fertilized with carefully selected sperm in a petri dish. Those fertilized eggs are allowed to divide and grow in the dish for four days, at which point the trained professional inserts those eggs into the uterus of a female so she can carry the pregnancy.

Created2021-08-13
175195-Thumbnail Image.jpg
Description

Rh factor is a protein found on the outside of Rh-positive red blood cells. Rh incompatibility during pregnancy occurs when an Rh-negative mother is pregnant with an Rh-positive fetus. During delivery, the fetus' Rh-positive blood is introduced into the mother’s body. The Rh-negative mother’s body begins to produce antibodies that

Rh factor is a protein found on the outside of Rh-positive red blood cells. Rh incompatibility during pregnancy occurs when an Rh-negative mother is pregnant with an Rh-positive fetus. During delivery, the fetus' Rh-positive blood is introduced into the mother’s body. The Rh-negative mother’s body begins to produce antibodies that attack and kill Rh-positive blood cells. Since the crossover of blood normally occurs during delivery, an Rh-negative woman’s first pregnancy is normally not affected. However, the woman’s antibodies may attack a second Rh-positive fetus as those antibodies can cross into the bloodstream and destroy fetal Rh-positive blood cells.

Created2021-08-15
173114-Thumbnail Image.png
Description

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells,

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells, embryonic stem cells, or ESCs, mesenchymal stem cells, or MSCs, and induced pluripotent stem cells, or iPS cells. Pluripotent stem cells are a special cell type that can give rise to other types of cells and are essential for development. The authors describe the strengths and weaknesses of each type of stem cell for regenerative medicine applications. They state that both MSC and iPS types of stem cells have the potential to regenerate tissues among many other therapeutic possibilities. In their article, Zomer and colleagues review the potential for MSCs and iPS cells to reshape the field of regenerative and personal medicine.

Created2021-08-04
173119-Thumbnail Image.png
Description

The goal of this research project was to examine how different messaging techniques, and especially expressions of emotionality surrounding the loss and recovery of biodiversity, can differently influence public attitudes about conservation and the environment. This question was explored using the case of de-extinction, an emerging and controversial conservation technology.

The goal of this research project was to examine how different messaging techniques, and especially expressions of emotionality surrounding the loss and recovery of biodiversity, can differently influence public attitudes about conservation and the environment. This question was explored using the case of de-extinction, an emerging and controversial conservation technology. De-extinction claims to “resurrect” extinct species, challenging widely held notions of extinction as permanent. Yet seeing extinction as reversible may shift how people feel about biodiversity loss and our moral responsibility to stop it.

Created2021-11-30
173085-Thumbnail Image.png
Description

Jérôme Lejeune was a French physician and researcher who studied genetics and developmental disorders. According to the Jérôme Lejeune Foundation, in 1958, Lejeune discovered that the existence of an extra twenty-first chromosome, a condition called Trisomy 21, causes Down Syndrome. Down Syndrome is a condition present in an individual since

Jérôme Lejeune was a French physician and researcher who studied genetics and developmental disorders. According to the Jérôme Lejeune Foundation, in 1958, Lejeune discovered that the existence of an extra twenty-first chromosome, a condition called Trisomy 21, causes Down Syndrome. Down Syndrome is a condition present in an individual since birth and is characterized by physical and developmental anomalies such as small ears, a short neck, heart defects, and short height as children and adults. Throughout his career, Lejeune also discovered that other developmental disorders, such as cri du chat (cry of the cat) syndrome, were caused by chromosomal abnormalities. Lejeune also used his influence in the scientific community to promote pro-life beliefs, and often met with Pope John Paul II to discuss ethical dilemmas such as abortion of fetuses after detection of chromosomal abnormalities. Lejeune was one of the first researchers to link chromosomal abnormalities to developmental disorders with his discovery of Trisomy 21, leading future researchers to identify more links between the two.

Created2021-08-19
173087-Thumbnail Image.png
Description

George Otto Gey was a scientist in the US who studied cells and cultivated the first continuous human cell line in 1951. Gey derived the cells for that cell line, called the HeLa cell line, from a woman called Henrietta Lacks, a Black woman who had cervical cancer. Cell lines

George Otto Gey was a scientist in the US who studied cells and cultivated the first continuous human cell line in 1951. Gey derived the cells for that cell line, called the HeLa cell line, from a woman called Henrietta Lacks, a Black woman who had cervical cancer. Cell lines are a cluster of cells that continuously multiply on their own outside of the organism from which they originated. Gey developed new techniques for in vitro, or laboratory-based, maintenance of organs and hormonal tissue, created new methods for cell cultivation, and researched nutritional media, or cell food. Much of his research involved tissue culture, which is the process by which cells are grown under controlled conditions. He also founded what is now known as the Tissue Culture Association, or the TCA, which centered around furthering laboratory research around tissue culturing. By introducing new techniques and methods to cultivate human cells, Gey expanded the laboratory techniques around cell cultivation and helped contribute to a deeper understanding of the human body for future scientific research.

Created2022-03-21
173100-Thumbnail Image.png
Description

John Langdon Down studied medicine in England in the nineteenth century and was one of the first people to develop a complete description of the disorder that would later be known as Trisomy 21, or Down Syndrome. Down Syndrome is a condition caused by the presence of an extra chromosome,

John Langdon Down studied medicine in England in the nineteenth century and was one of the first people to develop a complete description of the disorder that would later be known as Trisomy 21, or Down Syndrome. Down Syndrome is a condition caused by the presence of an extra chromosome, which may cause a person to be born with certain impaired learning abilities and physical features such as a short neck, flattened face, and almond-shaped eyes. In 1866, Down published one of the first accounts to accurately describe people with Down Syndrome, or what he called “Mongolism,” and identify it as a distinct condition. Additionally, Down advocated for people with mental disabilities at a time when their families commonly abandoned them and medical professionals did not prioritize them. He improved the quality of care for people in the centers he worked in and increased their educational opportunities so they would be better prepared to live a normal life. Down brought increased attention to Down Syndrome, leading to the future discovery of the chromosomal anomaly that causes the disorder, and promoting a higher standard of care for people with mental disabilities.

Created2021-08-12
173103-Thumbnail Image.png
Description

In the United States, most people are assigned both a biological sex and gender at birth based on their chromosomes and reproductive organs. However, there is an important distinction between biological sex and gender. Biological sex, such as male, female, or intersex, commonly refers to physical characteristics. Gender refers to

In the United States, most people are assigned both a biological sex and gender at birth based on their chromosomes and reproductive organs. However, there is an important distinction between biological sex and gender. Biological sex, such as male, female, or intersex, commonly refers to physical characteristics. Gender refers to the socially constructed roles, behaviors, and actions people take on, usually in relation to expectations of masculinity or femininity. As of 2022, there is disagreement over the relation between sex and gender. People’s biological sex and gender greatly influence the way they understand themselves, as well as how others treat them and how they interact with society. Moreover, some people’s gender differs from what they were assigned at birth, and they face discrimination, harassment, and violence. Evolving understandings of gender and sex in the US have created more ways for people to live and express their gender identities.

Created2022-06-13