The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21
172747-Thumbnail Image.png
Description

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.

Created2012-05-06
172983-Thumbnail Image.png
Description

Hans Peter Dietz and Judy Simpson published, “Levator Trauma is Associated with Pelvic Organ Prolapse,” in the journal BJOG: An International Journal of Obstetrics and Gynecology in 2008. In their article, Dietz and Simpson estimated the risk of pelvic organ prolapse in women who attained injuries to the pelvic levator

Hans Peter Dietz and Judy Simpson published, “Levator Trauma is Associated with Pelvic Organ Prolapse,” in the journal BJOG: An International Journal of Obstetrics and Gynecology in 2008. In their article, Dietz and Simpson estimated the risk of pelvic organ prolapse in women who attained injuries to the pelvic levator muscles. The levator muscles, also known as the levator ani, are a major muscle group that comprise the pelvic floor. Along with other muscles, the pelvic floor supports organs in a woman’s pelvis, such as the bladder, uterus, and rectum. Vaginal childbirth can cause a weakening of the pelvic muscles. That can lead to pelvic organ prolapse, which results in the descent of the pelvic organs towards a woman’s vaginal opening. In, “Levator Trauma is Associated with Pelvic Organ Prolapse,” Dietz and Simpson found that women were more likely to have pelvic organ prolapse if they had levator trauma, and called for further research to understand the relationship between levator ani trauma and pelvic organ prolapse.

Created2021-02-18
172990-Thumbnail Image.png
Description

In 1997, physicians and researchers Ambre Olsen, Virginia Smith, John Bergstrom, Joyce Colling, and Amanda Clark published, “Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence,” in the journal Obstetrics and Gynecology. In their article, the authors retrospectively analyzed data from patients who underwent surgery for pelvic organ prolapse

In 1997, physicians and researchers Ambre Olsen, Virginia Smith, John Bergstrom, Joyce Colling, and Amanda Clark published, “Epidemiology of Surgically Managed Pelvic Organ Prolapse and Urinary Incontinence,” in the journal Obstetrics and Gynecology. In their article, the authors retrospectively analyzed data from patients who underwent surgery for pelvic organ prolapse or urinary incontinence two years prior in 1995. Often due to a weakening of or damage to their pelvic muscles, women with pelvic organ prolapse can experience a descent of pelvic organs into the lower pelvis and vagina. People with urinary incontinence can experience bladder control issues and urinary leaks. According to the authors, an estimated fifty percent of women who have previously given birth have had a prolapse. In their article, Olsen and colleagues analyze factors such as race, age, and weight in women who had surgery to treat pelvic organ prolapse and ultimately advocate for a standard assessment for the severity of those conditions.

Created2021-02-23
172991-Thumbnail Image.png
Description

In 1996, a team of researchers associated with the International Continence Society published “The Standardization of Terminology of Female Pelvic Organ Prolapse and Pelvic Floor Dysfunction” in American Journal of Obstetrics and Gynecology. Pelvic organ prolapse is characterized by the descent of the pelvic organs into the lower portion of

In 1996, a team of researchers associated with the International Continence Society published “The Standardization of Terminology of Female Pelvic Organ Prolapse and Pelvic Floor Dysfunction” in American Journal of Obstetrics and Gynecology. Pelvic organ prolapse is characterized by the descent of the pelvic organs into the lower portion of the pelvis and is often caused by a weakening of the muscles and ligaments that normally hold the organs in place. The authors concluded that physicians and researchers needed to develop a system of standardized terms to use to describe the anatomical position of pelvic organ prolapse in women. They propose using terms that emphasize the location of the prolapse rather than just the involved organ. They also suggest that the system utilizes a series of examinations and imaging to uniformly describe and quantify pelvic organ prolapse. The article by Bump and colleagues was one of the first to call for a standardized system using specific terms to communicate findings about pelvic organ prolapse systematically across clinical and academic research settings.

Created2021-03-10
173037-Thumbnail Image.png
Description

In 2007, physicians John Jelovsek, Christopher Maher, and Matthew Barber published, “Pelvic Organ Prolapse,” in The Lancet. In their article, Jelovsek and colleagues provided an overview of pelvic organ prolapse in women and described the epidemiology, risk factors, symptoms, and management of the condition. Pelvic organ prolapse occurs when a

In 2007, physicians John Jelovsek, Christopher Maher, and Matthew Barber published, “Pelvic Organ Prolapse,” in The Lancet. In their article, Jelovsek and colleagues provided an overview of pelvic organ prolapse in women and described the epidemiology, risk factors, symptoms, and management of the condition. Pelvic organ prolapse occurs when a woman’s pelvic floor is weakened or damaged from stress or trauma such as vaginal childbirth. The pelvic floor is a group of muscles that provides support to organs within the lower abdominal region of the body, including the bladder, uterus, and rectum. Disorders of the pelvic floor disrupt its normal function, often causing a feeling of uncomfortable pressure or pain, and incontinence, which is involuntary leakage of urine or feces. In their article, Jelovsek and colleagues reviewed the known information about pelvic organ prolapse as of 2007 and research teams who further studied the causes and management of pelvic organ prolapse in women later used the article as a reference.

Created2021-03-16
173038-Thumbnail Image.png
Description

Pelvic organ prolapse is a common condition in women that causes the pelvic organs to descend, often resulting from a weakened pelvic floor. Pelvic organs supported by the pelvic floor, such as the bladder, bowel, or uterus, can descend to such a degree that they project out from a woman’s

Pelvic organ prolapse is a common condition in women that causes the pelvic organs to descend, often resulting from a weakened pelvic floor. Pelvic organs supported by the pelvic floor, such as the bladder, bowel, or uterus, can descend to such a degree that they project out from a woman’s body typically via the vagina. Pelvic floor stress or trauma, like vaginal childbirth, can cause pelvic organ prolapse. Women with pelvic organ prolapse also often experience other conditions, such as incontinence or the involuntary leakage of urine or fecal matter. As a result, while many women experience pressure or fullness from the prolapse itself, other common symptoms of pelvic organ prolapse are those involving the bladder or the bowel. Treatments for prolapse depend on the woman’s symptoms, and include pessaries, surgery, and pelvic floor exercises. As of 2021, researchers and physicians continue to study pelvic organ prolapse to determine how different treatments can be tailored to specific causes or symptoms.

Created2021-03-24
172833-Thumbnail Image.png
Description

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.

Created2012-02-16
172708-Thumbnail Image.png
Description

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Created2013-09-10
173786-Thumbnail Image.png
Description

In 2011, Cristian Persu, Christopher Chapple, Victor Cauni, Stefan Gutue, and Petrisor Geavlete published “Pelvic Organ Prolapse Quantification System (POP-Q) – A New Era in Pelvic Prolapse Staging,” in the Journal of Medicine and Life. In their article, the authors explain the need for a reliable diagnostic method for describing

In 2011, Cristian Persu, Christopher Chapple, Victor Cauni, Stefan Gutue, and Petrisor Geavlete published “Pelvic Organ Prolapse Quantification System (POP-Q) – A New Era in Pelvic Prolapse Staging,” in the Journal of Medicine and Life. In their article, the authors explain the need for a reliable diagnostic method for describing the state of a pelvic organ prolapse, or a condition that can result from weakness or damage to the muscles that support the pelvic organs, sometimes leading to bladder, bowel, and sexual dysfunction. Persu and colleagues describe a previous diagnostic method, the Baden-Walker Halfway Scoring System, comparing it to the newer system, the Pelvic Organ Prolapse Quantification System, referred to also as POP-Q. By examining the benefits and drawbacks of each pelvic organ prolapse measurement and diagnostic system, the authors proposed a universal acceptance of the POP-Q system, based on its accuracy and reliability.

Created2020-10-27