The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

172906-Thumbnail Image.png
Description

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers. Animals that have only two germ layers develop open digestive cavities. In contrast, the evolutionary development of the mesoderm allowed in animals the formation of internal organs such as stomachs and intestines (viscera).

Created2013-11-26
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173932-Thumbnail Image.png
Description

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced. Non-genetic sex determination occurs when the sex of an organism can be altered during a sensitive period of development due to external factors such as temperature, humidity, or social interactions. Temperature-dependent sex determination (TSD), where the temperature of the embryo's environment influences its sex development, is a widespread non-genetic process of sex determination among vertebrates, including reptiles. All crocodilians, most turtles, many fish, and some lizards exhibit TSD.

Created2013-02-01
173763-Thumbnail Image.png
Description

In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed

In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed treefrogs to alter their hatch timing had been documented, the specific cues that induce early hatching were not well understood. Warkentin's study demonstrated that, based on vibration signals alone, treefrog embryos can determine whether they are under attack from a predator and respond accordingly.

Created2012-04-07
173765-Thumbnail Image.png
Description

Cocaine use by pregnant women has a variety of effects on the embryo and fetus, ranging from various gastro-intestinal and cardiac defects to tissue death from insufficient blood supply. Thus, cocaine has been termed a teratogen, or an agent that causes defects in fetuses during prenatal development. Cocaine is one

Cocaine use by pregnant women has a variety of effects on the embryo and fetus, ranging from various gastro-intestinal and cardiac defects to tissue death from insufficient blood supply. Thus, cocaine has been termed a teratogen, or an agent that causes defects in fetuses during prenatal development. Cocaine is one of the most commonly used drugs in the US and it has a history of both medical and illegal recreational use. It is a drug capable of a wide array of effects on physical and mental health. Research on the teratogenic effects of cocaine began in the early 1980s, and in 1985 research on the effects of cocaine on prenatal development gained widespread attention. Since then, numerous studies have contributed to information about the detrimental impacts of maternal cocaine use on embryonic and fetal development.

Created2013-10-17
Description

Edward Drinker Cope studied fossils and anatomy in the US in the late nineteenth century. Based on his observations of skeletal morphology, Cope developed a novel mechanism to explain the law of parallelism, the idea that developing organisms successively pass through stages resembling their ancestors. Others had proposed the addition

Edward Drinker Cope studied fossils and anatomy in the US in the late nineteenth century. Based on his observations of skeletal morphology, Cope developed a novel mechanism to explain the law of parallelism, the idea that developing organisms successively pass through stages resembling their ancestors. Others had proposed the addition of new body forms at the end of an individual organism's developed as a mechanism through which new species arose, but those proposals relied on changes in the lengths of gestation or incubation. Cope proposed that a change in the growth rate of an embryo or fetus would allow the formation of new body forms while gestation or incubation periods remained constant. Thus, the growth of an embryo or fetus must become faster or slower to alter the number of stages during growth. Many paleontologists and geologists of the time, including Henry Fairfield Osborn and Louis Agassiz, accepted Cope's mechanisms of evolution as alternatives to natural selection as the causes generating new species, yet Cope proposed his mechanism solely as a way by which new genera arise. He advocated the neo-Lamarckian theory that new species evolve through the inheritance of acquired characteristics.

Created2012-01-01
173837-Thumbnail Image.png
Description

Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans, was published in 1993 in Environmental Health Perspectives. In the article, the authors present an account of two decades' worth of scientific research that describes the effects of certain pollutants on the health of wildlife, domestic animals, and humans, particularly when

Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans, was published in 1993 in Environmental Health Perspectives. In the article, the authors present an account of two decades' worth of scientific research that describes the effects of certain pollutants on the health of wildlife, domestic animals, and humans, particularly when exposure takes place during embryonic growth. The term endocrine disruptor was coined in the article to describe the chemical pollutants that target the development and function of the endocrine system. Since its publication, Developmental Effects has increased research interest in endocrine disruption and has raised awareness among the general public, the scientific community, and government organizations about the effects that some chemicals may have on development and reproduction.

Created2014-01-10
173838-Thumbnail Image.png
Description

Victor Ambros is a professor of molecular medicine at the University of Massachusetts Medical School, and he discovered the first microRNA (miRNA) in 1993. Ambros researched the genetic control of developmental timing in the nematode worm Caenorhabditis elegans and he helped describe gene function and regulation during the worm’s

Victor Ambros is a professor of molecular medicine at the University of Massachusetts Medical School, and he discovered the first microRNA (miRNA) in 1993. Ambros researched the genetic control of developmental timing in the nematode worm Caenorhabditis elegans and he helped describe gene function and regulation during the worm’s development and embryogenesis. His discovery of miRNA marked the beginning of research into a form of genetic regulation found throughout diverse life forms from plants to humans. Ambros is a central figure in the miRNA and C. elegans research communities, and co-directs the RNA Therapeutics Institute.

Created2012-05-13
173705-Thumbnail Image.png
Description

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before. Furthermore, this model revealed behaviors of the gene networks that could only be observed at the levels of biological organization above that of the gene.

Created2013-10-11
Description

Radioimmunoassay (RIA) is a technique in which researchers use radioactive isotopes as traceable tags to quantify specific biochemical substances from blood samples. Rosalyn Yalow and Solomon Berson developed the method in the 1950s while working at the Bronx Veterans Administration (VA) Hospital in New York City, New York. RIA requires

Radioimmunoassay (RIA) is a technique in which researchers use radioactive isotopes as traceable tags to quantify specific biochemical substances from blood samples. Rosalyn Yalow and Solomon Berson developed the method in the 1950s while working at the Bronx Veterans Administration (VA) Hospital in New York City, New York. RIA requires small samples of blood, yet it is extremely sensitive to minute quantities of biological molecules within the sample. The use of RIA improved the accuracy of many kinds of medical diagnoses, and it influenced hormone and immune research around the world. Before the RIA was developed, other methods that detected or measured small concentrations of biochemical substances required large samples of blood-- often too large for researchers to collect. With the development of RIA, researchers could use a single drop of blood to detect and measure the concentration of some biochemical substances. By 1970 doctors used RIA to measure follicle stimulating and luteinizing hormones to diagnose and treat infertility in women. Further developments led to neonatal screening programs for hypothyroidism.

Created2013-10-11