The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 42
Filtering by

Clear all filters

175310-Thumbnail Image.jpg
Description

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage.

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Created2014-08-21
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173935-Thumbnail Image.png
Description

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks.

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity. Unlike other tissues, enamel does not remodel after it forms, leaving those microstructures intact after deposition. Cross-striations and striae of Retzius thus provide evidence of the timing and processes of tooth development, and they indicate how organisms in a lineage differently grow and develop across generations. Researchers have examined those microstructures to investigate human evolution.

Created2013-01-31
173938-Thumbnail Image.png
Description

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived from vitamin A, or retinoic acid. Doctors prescribe isotretinoin to treat severe acne. For pregnant women, too much vitamin A or isotretinoin can also cause greater than normal rates of stillbirths and fetal disintegrations after the ninth week of gestation. Women who use isotretinoin during the first trimester of their pregnancies, even in small amounts, risk defects to their fetuses such as external ear malformations, cleft palates, undersized jaws (micrognathia), a variety of heart defects, buildups of fluids inside the skulls that leads to brain swelling (hydrocephalus), small heads and brains (microcephaly), and mental retardation.

Created2014-07-20
173880-Thumbnail Image.png
Description

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the li

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.

Created2012-10-17
173894-Thumbnail Image.png
Description

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and social issues, and researched and theorized in many biological fields. Huxley made several methodological contributions to both invertebrate and vertebrate embryology and development, and he helped shape the extra-scientific discourse for these fields.

Created2013-11-26
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173408-Thumbnail Image.png
Description

Josef Warkany studied the environmental causes of birth defects in the United States in the twentieth century. Warkany was one of the first researchers to show that factors in the environment could cause birth defects, and he helped to develop guidelines for the field of teratology, the study of birth

Josef Warkany studied the environmental causes of birth defects in the United States in the twentieth century. Warkany was one of the first researchers to show that factors in the environment could cause birth defects, and he helped to develop guidelines for the field of teratology, the study of birth defects. Prior to Warkany’s work, scientists struggled to explain if or how environmental agents could cause birth defects. Warkany demonstrated that a deficiency or excess of vitamin A in maternal nutrition could cause birth defects. He also established that mercury in teething powders increased infant mortality rates. Warkany showed how substances outside the human body could adversely affect conception, growth, and development of the human fetus in utero.

Created2017-05-26
173263-Thumbnail Image.png
Description

The article Experimental Studies on Congenital Malformations was published in the Journal of Chronic Diseases in 1959. The author, James G. Wilson, studied embryos and birth defects at the University of Florida Medical School in Gainesville, Florida. In his article, Wilson reviewed experiments on birds and mammals from the previous

The article Experimental Studies on Congenital Malformations was published in the Journal of Chronic Diseases in 1959. The author, James G. Wilson, studied embryos and birth defects at the University of Florida Medical School in Gainesville, Florida. In his article, Wilson reviewed experiments on birds and mammals from the previous forty years to provide general principles and guidelines in the study of birth defects and teratogens, which are things that cause birth defects. Those principles included what species are convenient for conducting teratological research, what principles act in human embryological and fetal development, and what agents impact those processes. Wilson's article was one of the first attempts in the twentieth century to synthesize basic research conducted in the field of teratology. The article helped to establish teratology as a field in medicine during the twentieth century.

Created2017-06-15
173271-Thumbnail Image.png
Description

Sidney Q. Cohlan studied birth defects in the US during the twentieth century. Cohlan helped to discover that if a pregnant woman ate too much vitamin A her fetus faced a higher than normal risk of teratogenic effects, such as cleft palate. A teratogen is a substance that causes malformation

Sidney Q. Cohlan studied birth defects in the US during the twentieth century. Cohlan helped to discover that if a pregnant woman ate too much vitamin A her fetus faced a higher than normal risk of teratogenic effects, such as cleft palate. A teratogen is a substance that causes malformation of a developing organism. Cohlan also identified the teratogenic effects of several other substances including a lack of normal magnesium and prenatal exposure to the antibiotic tetracycline. Cohlan's experiments with vitamins and other chemicals brought attention to how nutrition and environmental agents adversely affect human pregnancy outcomes.

Created2017-06-18