The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 48
Filtering by

Clear all filters

175310-Thumbnail Image.jpg
Description

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage.

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Created2014-08-21
173927-Thumbnail Image.png
Description

Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The

Conrad Hal Waddington's "Experiments on Embryonic Induction III," published in 1934 in the Journal of Experimental Biology, describes the discovery that the primitive streak induces the mammalian embryo. Waddington's hypothesis was that a transplanted primitive streak could induce neural tissue in the ectoderm of the rabbit embryo. The primitive streak defines the axis of an embryo and is capable of inducing the differentiation of various tissues in a developing embryo during gastrulation. In this experiment Waddington was, in fact, able to induce neural differentiation. Waddington noted that the tissue is "competent"; for a chick organizer, and by deduction a mammalian organizer must exist. Competence refers to a cell's ability to respond to an inducing signal, which is temporally limited to certain developmental stages. Waddington's initial work laid the foundation for many decades of research to follow, including further experiments by Waddington with the mammalian organizer.

Created2007-10-30
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173935-Thumbnail Image.png
Description

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks.

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity. Unlike other tissues, enamel does not remodel after it forms, leaving those microstructures intact after deposition. Cross-striations and striae of Retzius thus provide evidence of the timing and processes of tooth development, and they indicate how organisms in a lineage differently grow and develop across generations. Researchers have examined those microstructures to investigate human evolution.

Created2013-01-31
173880-Thumbnail Image.png
Description

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the li

Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.

Created2012-10-17
173889-Thumbnail Image.png
Description

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively studied vertebrate retinas during and after embryonic development. Detwiler's work established many principles studied in later limb transplantation experiments and was identified by Viktor Hamburger as an important bridge between his and Ross Granville Harrison's research.

Created2007-11-01
173891-Thumbnail Image.png
Description

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus for work on genetic control of early embryonic development.

Created2007-11-11
173894-Thumbnail Image.png
Description

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and

In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and social issues, and researched and theorized in many biological fields. Huxley made several methodological contributions to both invertebrate and vertebrate embryology and development, and he helped shape the extra-scientific discourse for these fields.

Created2013-11-26
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173912-Thumbnail Image.png
Description

Stanley Cohen is a biochemist who participated in the discovery of nerve growth factor (NGF) and epidermal growth factor (EGF). He shared the 1986 Nobel Prize in Physiology or Medicine with Rita Levi-Montalcini for their work on the discovery of growth factors. His work led to the discovery of many

Stanley Cohen is a biochemist who participated in the discovery of nerve growth factor (NGF) and epidermal growth factor (EGF). He shared the 1986 Nobel Prize in Physiology or Medicine with Rita Levi-Montalcini for their work on the discovery of growth factors. His work led to the discovery of many other growth factors and their roles in development.

Created2007-11-01