The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 35
Filtering by

Clear all filters

173884-Thumbnail Image.png
Description

Ovism was one of two models of preformationism, a theory of generation prevalent in the late seventeenth through the end of the eighteenth century. Contrary to the competing theory of epigenesis (gradual emergence of form), preformationism held that the unborn offspring existed fully formed in the eggs or sperm of

Ovism was one of two models of preformationism, a theory of generation prevalent in the late seventeenth through the end of the eighteenth century. Contrary to the competing theory of epigenesis (gradual emergence of form), preformationism held that the unborn offspring existed fully formed in the eggs or sperm of its parents prior to conception. The ovist model held that the maternal egg was the location of this preformed embryo, while the other preformationism model known as spermism preferred the paternal germ cell, as the name implies.

Created2008-08-13
173887-Thumbnail Image.png
Description

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went to the University of Toronto with the aim of studying ministry. He slowly became disillusioned with this career choice and decided to major in the natural sciences. It was during his senior year that he developed his lifelong interest in embryology. Graduating with a BA in 1891 Lillie then moved to the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, to work and study with Charles Otis Whitman, the founding director of the MBL. Lillie collected and studied cell lineage side-by-side with some of the most prominent embryologists of the time: Edmund B. Wilson, Edwin G. Conklin, and Aaron L. Treadwell. Along with his cell lineage studies, Whitman guided Lillie to work on the question of how blastomeres contributed to the formation of organs in fresh water clams.

Created2009-07-22
173890-Thumbnail Image.png
Description

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis. Just's many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Created2010-06-16
173898-Thumbnail Image.png
Description

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell. This sketch is important to embryology because it is one of the most illustrative examples of preformationism, a theory of generation stating that each future member of any given species exists, fully formed though miniscule, within the gametic cells (sperm or eggs) of its parents. This theory was popular among naturalists in the eighteenth century.

Created2008-08-14
173903-Thumbnail Image.png
Description

Anatomical models have always been a mainstay of descriptive embryology. As the training of embryologists grew in the late 1800s, so too did the need for large-scale teaching models. Embryo wax models, such as those made by Adolf Ziegler and Gustav Born, were popular in the latter part of the

Anatomical models have always been a mainstay of descriptive embryology. As the training of embryologists grew in the late 1800s, so too did the need for large-scale teaching models. Embryo wax models, such as those made by Adolf Ziegler and Gustav Born, were popular in the latter part of the nineteenth century and the early twentieth century as a way to visualize, in three dimensions, the fine detail of embryos without the aid of a microscope. While these models were found in many university laboratories, museums of science, and even expositions and world's fairs, they were anything but easy to make or obtain. Wax modeling required skill, patience, and specialized tools. Small laboratories with only one or two embryologists often found the prospect of wax modeling too laborious, too difficult, and too expensive to make the pursuit worthwhile. As an alternative, Susanna Phelps Gage, an embryologist at Cornell University, perfected a technique of using stacks of absorbent blotting paper rather than stacks of wax plates for constructing embryo models. She first demonstrated her blotting paper method to other embryologists at the annual meeting of the Association of American Anatomists in 1905 and later at the International Zoological Congress, held in Boston in August 1907.

Created2010-11-17
173918-Thumbnail Image.png
Description

Hans Spemann was an experimental embryologist best known for his transplantation studies and as the originator of the "organizer" concept. One of his earliest experiments involved constricting the blastomeres of a fertilized salamander egg with a noose of fine baby hair, resulting in a partially double embryo with two heads

Hans Spemann was an experimental embryologist best known for his transplantation studies and as the originator of the "organizer" concept. One of his earliest experiments involved constricting the blastomeres of a fertilized salamander egg with a noose of fine baby hair, resulting in a partially double embryo with two heads and one tail. Spemann continued changing variables such as the amount of time the embryo was constricted and the degree of constriction, all of which added more empirical evidence to Hans Driesch's studies showing that embryonic cells could self-regulate to varying degrees. Spemann's long list of "simple" experiments and significant findings were mainly carried out at his laboratory, the Spemann School at the University of Freiburg, Germany, where numerous graduate students collaborated with Spemann to investigate embryonic induction.

Created2010-06-15
173921-Thumbnail Image.png
Description

Historically the exact age of human embryo specimens has long perplexed embryologists. With the menstrual history of the mother often unknown or not exact, and the premenstrual and postmenstrual phases varying considerably among women, age sometimes came down to a best guess based on the weight and size of the

Historically the exact age of human embryo specimens has long perplexed embryologists. With the menstrual history of the mother often unknown or not exact, and the premenstrual and postmenstrual phases varying considerably among women, age sometimes came down to a best guess based on the weight and size of the embryo. Wilhelm His was one of the first to write comparative descriptions of human embryos in the late 1800s. Soon afterward, Franklin P. Mall, the first director of the Carnegie Institution of Washington's (CIW) Department of Embryology, expanded upon His' work. Mall's first efforts were to place embryos into stages based on menstrual ages and body length. This method ran into problems however when it became apparent that obtaining menstrual ages was often impossible or simply too inaccurate even if the information could be obtained from the women who carried the embryos. Mall decided instead to look for patterns among embryos to come up with some type of staging system whereby embryo age could be more accurately determined.

Created2009-07-17
173922-Thumbnail Image.png
Description

Jacques Loeb is best known for his embryological work investigating parthenogenesis in invertebrates. Artificial Parthenogenesis and Fertilization is a revised and English-translated work from his earlier book, Die chemische Entwicklungserregung des tierischen Eies (1900). Artificial Parthenogenesis describes Loeb's many and varied methodical experiments to initiate egg development without fertilization by

Jacques Loeb is best known for his embryological work investigating parthenogenesis in invertebrates. Artificial Parthenogenesis and Fertilization is a revised and English-translated work from his earlier book, Die chemische Entwicklungserregung des tierischen Eies (1900). Artificial Parthenogenesis describes Loeb's many and varied methodical experiments to initiate egg development without fertilization by sperm. As is true with much of science, some of Loeb's experiments were successful and many were not. Artificial Parthenogenesis presents a sense of what early twentieth century embryology looked like: experimenters' overarching desire for manipulation and control, coupled with their use of chemicals and macromolecules as agents of change. The book also illuminates the historical role of the sea urchin in the study of embryological development.

Created2010-06-15
173923-Thumbnail Image.png
Description

Nicolaas Hartsoeker, a Dutch astronomer, optics manufacturer, and naturalist, was born 26 March 1656 in Gouda, Netherlands, and died 10 December 1725. His mother was Anna van der Mey and his father was Christiaan Hartsoeker, a prominent evangelical minister. His major contribution to embryology was his observations of human sperm

Nicolaas Hartsoeker, a Dutch astronomer, optics manufacturer, and naturalist, was born 26 March 1656 in Gouda, Netherlands, and died 10 December 1725. His mother was Anna van der Mey and his father was Christiaan Hartsoeker, a prominent evangelical minister. His major contribution to embryology was his observations of human sperm cells, which he claimed to be the first to see under a microscope. His sketch of the homunculus, a tiny preformed human he believed to exist in the head of spermatazoa, is his lasting scientific legacy in the field of embryology. This sketch was only a minor part of his first publication, Essai de Dioptrique (1694), which dealt primarily with the use of optical lenses in science. In subsequent years the sketch became iconic of the theory of embryological development known now as preformationism. Hartsoeker himself was a vocal adherent of spermist preformationism and is often cited as the originator of the idea.

Created2008-09-26
173924-Thumbnail Image.png
Description

Preformationism was a theory of embryological development used in the late seventeenth through the late eighteenth centuries. This theory held that the generation of offspring occurs as a result of an unfolding and growth of preformed parts. There were two competing models of preformationism: the ovism model, in which

Preformationism was a theory of embryological development used in the late seventeenth through the late eighteenth centuries. This theory held that the generation of offspring occurs as a result of an unfolding and growth of preformed parts. There were two competing models of preformationism: the ovism model, in which the location of these preformed parts prior to gestation was the maternal egg, and the spermism model, in which a preformed individual or homunculus was thought to exist in the head of each sperm. Preformationism was a widely-held theory by Enlightenment-era scientists, but by the early 1800s, most scientists had abandoned it, in part because higher magnification in microscopes enabled them to see the very earliest stages of embryos as small collections of cells. Prior to preformationism, naturalists who studied embryo development favored the theory of spontaneous generation in lower animals, such as flies, which appeared to arise from manure. In higher animals, however, scientists used the theory of epigenesis put forth by Aristotle, who said that maternal and paternal fluids came together in the uterus and solidified during early gestation into a fetus. Preformationism was the first theory of generation and development that applied to all organisms in the plant and animal kingdoms.

Created2008-08-11