The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

173886-Thumbnail Image.png
Description

Orchiopexy, also known as orchidopexy, is a surgical technique that can correct cryptorchidism and was successfully performed for one of the first times in 1877 in Scotland. Cryptorchidism, a condition where one or both of the testicles fail to descend before birth, is one of the most common male genital

Orchiopexy, also known as orchidopexy, is a surgical technique that can correct cryptorchidism and was successfully performed for one of the first times in 1877 in Scotland. Cryptorchidism, a condition where one or both of the testicles fail to descend before birth, is one of the most common male genital birth defects, affecting approximately 2 to 8 percent of full-term male infants, and around 33 percent of premature infants. Typically in the womb, male testes form within the abdomen, then descend into the scrotal area between twenty-five to thirty-five weeks’ gestation. If one or both testicles fail to descend before birth, physicians use orchiopexy to surgically relocate the undescended testes to their normal position in the scrotum. According to many researchers, most cases of cryptorchidism do not resolve on their own, and therefore, orchiopexy surgery is often necessary. Orchiopexy, when performed before puberty, can decrease the risk of testicular cancer and infertility associated with cryptorchidism.

Created2020-10-15
173908-Thumbnail Image.png
Description

First manufactured in 1988 by Serono laboratories, recombinant gonadotropins are synthetic hormones that can stimulate egg production in women for use in fertility treatments. Recombinant gonadotropins are artificially created using recombinant DNA technology, a technology that joins together DNA from different organisms. In vertebrates, naturally-occurring gonadotropins regulate the growth and

First manufactured in 1988 by Serono laboratories, recombinant gonadotropins are synthetic hormones that can stimulate egg production in women for use in fertility treatments. Recombinant gonadotropins are artificially created using recombinant DNA technology, a technology that joins together DNA from different organisms. In vertebrates, naturally-occurring gonadotropins regulate the growth and function of the gonads, known as testes in males and ovaries in females. Medical professionals can derive female gonadotropins from the urine of pregnant and post-menopausal women, often using it to facilitate in vitro fertilization, or IVF. With the rapid development of assisted reproductive technologies like IVF, demand for human-derived gonadotropins rose to a global yearly demand of 120 million liters of urine by the beginning of the twenty-first century, which resulted in a demand that could not be met by traditional technologies at that time. Therefore, researchers created recombinant gonadotropins to establish a safer and more consistent method of human gonadotropin collection that met the high demand for its use in fertility treatments.

Created2020-10-26
173916-Thumbnail Image.png
Description

The US 2nd Circuit Court of Appeals' 1984 decision United States v. University Hospital, State University Hospital of New York at Stony Brook set a significant precedent for affirming parental privilege to make medical decisions for handicapped newborns, while limiting the ability of the federal government to intervene. The ruling

The US 2nd Circuit Court of Appeals' 1984 decision United States v. University Hospital, State University Hospital of New York at Stony Brook set a significant precedent for affirming parental privilege to make medical decisions for handicapped newborns, while limiting the ability of the federal government to intervene. The ruling stemmed from the 1983 case involving an infant born with severe physical and mental congenital defects; the infant was only identified as Baby Jane Doe. After her parents opted against corrective surgery for some of her deformities, Baby Jane Doe became the epicenter of a national right-to-life debate that had been previously sparked one year prior with the case of Baby Doe, an Indiana infant born with similarly severe handicaps.

Created2011-05-11
173915-Thumbnail Image.png
Description

The Baby Doe Rules represent the first attempt by the US government to directly intervene in treatment options for neonates born with congenital defects. The name of the rule comes from the controversial 1982 case of a Bloomington, Indiana infant Baby Doe, a name coined by the media. The Baby

The Baby Doe Rules represent the first attempt by the US government to directly intervene in treatment options for neonates born with congenital defects. The name of the rule comes from the controversial 1982 case of a Bloomington, Indiana infant Baby Doe, a name coined by the media. The Baby Doe Rules mandate that, as a requirement for federal funding, hospitals and physicians must provide maximal care to any impaired infant, unless select exceptions are met. If a physician or parent chooses to withhold full treatment when the exceptions are not met, they are liable for medical neglect. After a prolonged legal battle, President Ronald Reagan signed the law on 9 October 1984 as an amendment to the Child Abuse Prevention and Treatment Act (CAPTA) of 1974. Since then, the Baby Doe Rules have influenced both the parents' right to make medical decisions for their child and the way laws can affect treatment options in the US.

Created2011-05-12
173829-Thumbnail Image.png
Description

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Created2011-05-19
172997-Thumbnail Image.png
Description

In 2007, Ishola Agbaje, Deirdre Rogers, Carmel McVicar, Neil McClure, Albert Atkinson, Con Mallidis, and Sheena Lewis published “Insulin Dependent Diabetes Mellitus: Implications for Male Reproductive Function,” hereby “Diabetes Mellitus: Implications,” in the journal Human Reproduction. In their article, the authors explore the effects of elevated blood sugar in the

In 2007, Ishola Agbaje, Deirdre Rogers, Carmel McVicar, Neil McClure, Albert Atkinson, Con Mallidis, and Sheena Lewis published “Insulin Dependent Diabetes Mellitus: Implications for Male Reproductive Function,” hereby “Diabetes Mellitus: Implications,” in the journal Human Reproduction. In their article, the authors explore the effects of elevated blood sugar in the form of diabetes mellitus on the quality of male sperm. When investigating possible fertility issues, fertility specialists often study semen, the male reproductive fluid that contains sperm cells to detect changes in sperm count, movement, and structure. In “Diabetes Mellitus: Implications,” the authors use both conventional semen analysis and technical molecular methods to assess the quality of sperm from diabetic and non-diabetic men. The authors found that men with diabetes had higher levels of DNA damage within their sperm and highlighted a need for additional research on the link between diabetes and male reproductive health.

Created2021-03-17
172804-Thumbnail Image.png
Description

In the twentieth century, researchers developed the oral glucose tolerance test, or OGTT, as a method to diagnose different types of diabetes, a medical condition that causes blood sugar levels to become abnormally high. During the test, a healthcare provider measures a person’s blood sugar levels before and after the

In the twentieth century, researchers developed the oral glucose tolerance test, or OGTT, as a method to diagnose different types of diabetes, a medical condition that causes blood sugar levels to become abnormally high. During the test, a healthcare provider measures a person’s blood sugar levels before and after the person consumes a predetermined amount of glucose solution. While not exclusively used for pregnant women, an OGTT may test for gestational diabetes which, according to the International Diabetes Federation, affected one in six pregnancies worldwide in 2019. Generally, the results from an OGTT can inform a patient and her physician how her body is responding to glucose during pregnancy, and high levels may increase her risk of developing adverse pregnancy outcomes such as heavy bleeding during delivery and a high blood pressure condition known as preeclampsia. An OGTT can help to accurately diagnose, treat, and monitor gestational diabetes in pregnant women, which can reduce health and pregnancy complications for the woman and the fetus.

Created2020-12-09
172833-Thumbnail Image.png
Description

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.

Created2012-02-16
172870-Thumbnail Image.png
Description

Transvaginal ultrasound-guided oocyte retrieval, also known as egg retrieval, is a surgical technique used by medical professionals to extract mature eggs directly from the women’s ovaries under the guidance of ultrasound imaging. In 1982, physicians Suzan Lenz and Jorgen Lauritsen at the University of Copenhagen in Copenhagen, Denmark, proposed the

Transvaginal ultrasound-guided oocyte retrieval, also known as egg retrieval, is a surgical technique used by medical professionals to extract mature eggs directly from the women’s ovaries under the guidance of ultrasound imaging. In 1982, physicians Suzan Lenz and Jorgen Lauritsen at the University of Copenhagen in Copenhagen, Denmark, proposed the technology to improve the egg collection aspect of in vitro fertilization, or IVF. During IVF, a healthcare practitioner must remove mature eggs from a woman’s ovaries to fertilize them with sperm outside of the body. Transvaginal ultrasound-guided egg retrieval is a surgery that can be completed in a medical office setting in twenty minutes. Transvaginal ultrasound-guided egg retrieval increased mature egg collection and rates of successful fertilization, becoming the new standard for egg collection in IVF.

Created2020-12-14
172892-Thumbnail Image.png
Description

Researchers Geoffrey Sher and Jeffrey Fisch gave Viagra, also known as sildenafil, to women undergoing fertility treatment to test whether the medication could improve fertility and pregnancy rates. The researchers proposed that Viagra, typically indicated to treat erectile dysfunction in men, would help women with a history of failed past

Researchers Geoffrey Sher and Jeffrey Fisch gave Viagra, also known as sildenafil, to women undergoing fertility treatment to test whether the medication could improve fertility and pregnancy rates. The researchers proposed that Viagra, typically indicated to treat erectile dysfunction in men, would help women with a history of failed past fertility treatments by thickening their endometrial lining, which is the layer of tissue in the uterus where an embryo implants during pregnancy. Sher and Fisch gave the women Viagra during in vitro fertilization, or IVF, an assisted reproductive technology. They summarized their findings in the article “Effect of Vaginal Sildenafil on the Outcome of In Vitro Fertilization (IVF) After Multiple IVF Failures Attributed to Poor Endometrial Development,” published in Fertility and Sterility in 2002. Although they noted additional research was needed, Sher and Fisch concluded that the prescribed combination treatment of Viagra and IVF resulted in an increased thickening of the endometrium lining which enabled the embryo to implant and result in a pregnancy.

Created2020-12-22