The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
Description

The Human Papillomavirus (HPV) strains 16 and 18 are the two most common HPV strains that lead to cases of genital cancer. HPV is the most commonly sexually transmitted disease, resulting in more than fourteen million cases per year in the United States alone. When left untreated, HPV leads to

The Human Papillomavirus (HPV) strains 16 and 18 are the two most common HPV strains that lead to cases of genital cancer. HPV is the most commonly sexually transmitted disease, resulting in more than fourteen million cases per year in the United States alone. When left untreated, HPV leads to high risks of cervical, vaginal, vulvar, anal, and penile cancers. In 1983 and 1984 in Germany, physician Harald zur Hausen found that two HPV strains, HPV-16 and HPV-18, caused cervical cancer in women. In the early twenty first century, pharmaceutical companies Merck & Co. and GlaxoSmithKline created HPV vaccines protecting against HPV-16 and HPV-18, which have reduced the number of HPV infections by fifty-six percent in the US. Discovering HPV strains 16 and 18 allowed physicians to test for those cancer-causing cell populations using Pap smears, a diagnostic tool that collects cells from the woman's cervix to identify cancerous cases of HPV infection. By identifying the cancerous strains of HPV-16 and HPV-18 and utilizing preventative measures such as the Pap smear and HPV vaccines, the rates of cervical cancer and other HPV-related cancers have reduced.

Created2017-05-04
173428-Thumbnail Image.png
Description

Where Are My Children? is an anti-abortion silent film released in the United States on 16 April 1916. The film was directed by Lois Weber and Phillips Smalley and produced by Universal Film Manufacturing Company/Lois Weber Productions in Universal City, California. In the film, Weber tells a story of an

Where Are My Children? is an anti-abortion silent film released in the United States on 16 April 1916. The film was directed by Lois Weber and Phillips Smalley and produced by Universal Film Manufacturing Company/Lois Weber Productions in Universal City, California. In the film, Weber tells a story of an attorney who wants to have children and raise a family, but his wife chooses to abort her pregnancies, fearing that having children will ruin her social activities. In the early 1900s, information about contraception was not freely available or legal to obtain. Physicians were allowed to distribute contraceptives only if the woman would be put in a life-threatening circumstance were she to get pregnant. In the film, Weber encourages contraceptives as a means of family planning, but advocates against abortions. Where Are My Children? is one of the first films to discuss birth control and family planning, and it is among the first to push against motion picture censorship of contraception and family planning in cinema.

Created2017-05-26
173235-Thumbnail Image.png
Description

From 1977 to 1987, Harald zur Hausen led a team of researchers across several institutions in Germany to investigate whether the human papillomavirus (HPV) caused cervical cancer. Zur Hausen's first experiment tested the hypothesis that HPV caused cervical cancer rather than herpes simplex virus type 2 (HSV-2), the then accepted

From 1977 to 1987, Harald zur Hausen led a team of researchers across several institutions in Germany to investigate whether the human papillomavirus (HPV) caused cervical cancer. Zur Hausen's first experiment tested the hypothesis that HPV caused cervical cancer rather than herpes simplex virus type 2 (HSV-2), the then accepted cause. His second and third experiments detailed methods to identify two previously unidentified HPV strains, HPV 16 and HPV 18, in cervical cancer tumor samples. The experiments showed that HPV 16 and 18 DNA were present in cervical tumor samples. Zur Hausen concluded that HPV, not HSV-2, caused cervical cancer, which enabled researchers to develop preventions, such as the HPV vaccine.

Created2017-03-09
173301-Thumbnail Image.png
Description

Gattaca is a 1997 science fiction film produced in the US that depicts a future society that uses reproductive technology and genetic engineering in order to produce genetically enhanced human beings. By selectively choosing certain genes, scientists and physicians ensure that individuals born using reproductive technologies have desirable physical and

Gattaca is a 1997 science fiction film produced in the US that depicts a future society that uses reproductive technology and genetic engineering in order to produce genetically enhanced human beings. By selectively choosing certain genes, scientists and physicians ensure that individuals born using reproductive technologies have desirable physical and psychological traits and prevent undesirable traits. The film tells a story of Vincent Freeman, a man conceived without the aid of reproductive technology, who works to overcome his genetic disadvantages compared to his enhanced counterparts in order to achieve his dream of a career in space travel. The film was directed and written by Andrew Niccol and released by Columbia Pictures in Culver City, California, on 24 October 1997. Gattaca addresses the ethical uses of biotechnology, gene manipulation, and genetic engineering, and the film helps illustrate the debate over human genetic engineering research and implications.

Created2017-02-09
173430-Thumbnail Image.png
Description

Собачье сердце (Heart of a Dog) is a novella written in 1925 by author and playwright Mikhail Bulgakov in Moscow, USSR, later Russia. An early English translation was published in 1968. Heart of a Dog tells the story of a stray dog named Sharik, who is found by a surgeon,

Собачье сердце (Heart of a Dog) is a novella written in 1925 by author and playwright Mikhail Bulgakov in Moscow, USSR, later Russia. An early English translation was published in 1968. Heart of a Dog tells the story of a stray dog named Sharik, who is found by a surgeon, and undergoes extensive surgery for experimental purposes to create a New Soviet man, someone committed to the ideals of communism in the Soviet Union. In Heart of a Dog, Bulgakov satirizes the communist revolution in the Soviet Union and the concept of a New Soviet man, and criticizes the science and practice of eugenics.

Created2017-05-29
173432-Thumbnail Image.png
Description

Tomorrow's Children is a film that tells the story of Alice Mason, a young woman whom the US government forcibly sterilizes because she comes from a family with a history of alcoholism, mental illnesses, and physical disabilities, traits that they considered biologically determined and inferior. The film, released in 1934,

Tomorrow's Children is a film that tells the story of Alice Mason, a young woman whom the US government forcibly sterilizes because she comes from a family with a history of alcoholism, mental illnesses, and physical disabilities, traits that they considered biologically determined and inferior. The film, released in 1934, was directed by Crane Wilbur, produced by Bryan Foy, written by Wilbur and Wallace Thurman, and released by Foy Productions Ltd. Tomorrow's Children criticized forced sterilization and the eugenics movement in the United States in addition to protesting film censorship regulations in the early 1900s.

Created2017-05-30
173286-Thumbnail Image.png
Description

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same! Unfortunately, our regenerative capacities are limited to hair, nails, and skin, while the liver and a few other tissues display more restricted regenerative abilities. What if we could grow back lost limbs, or damaged organs? This question has inspired many stories, dating back to Greek mythology, wherein Prometheus was doomed to regenerate his liver after it had been devoured by birds. Regeneration has permeated many imaginations; it has appeared in many literary and religious texts, and has also provoked much interest from the scientific community.

Created2009-06-10
173192-Thumbnail Image.png
Description

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch.

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch. He grew up in a wealthy merchant family in Hamburg, Germany, where he was educated at the humanistic Gymnasium Gelehrtenschule des Johanneums that had been founded by a friend of Martin Luther. In 1886 he spent two summers studying with Weismann at the University of Freiburg and then entered the University of Jena, where he received his doctorate in 1889 with a study of hydroid colonies. By 1890 Driesch had lost interest in Haeckel's popular phylogenetic approach to zoology and instead focused on experimental embryology.

Created2007-11-01
173195-Thumbnail Image.png
Description

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen,

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen, the unusual organism. He therefore decided to create a film to present at seminars in order to introduce his object of study; the time-lapsed film captivated audiences, indeed Bonner has described that the film "always stole the show." Bonner began working in the biology department at Princeton University in 1947, and although Princeton appears in the opening title, Bonner actually made the film for his senior thesis as an undergraduate at Harvard University with some early assistance from Frank Smith, a photographer. Although unsure of name of the device that was used for filming, he has described it as "the most amazing antique contraption that belonged to my professor, Wm. H. Weston. It consisted of a gigantic and VERY heavy set of brass gears that had numerous possible speeds that turned a crank on the side of an old 16 mm box camera that pointed into the ocular of a microscope. The electric motor that propelled it made such vibrations that the whole apparatus had to be on a separate table and not touching the microscope."

Created2008-05-02