The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 29
Filtering by

Clear all filters

173916-Thumbnail Image.png
Description

The US 2nd Circuit Court of Appeals' 1984 decision United States v. University Hospital, State University Hospital of New York at Stony Brook set a significant precedent for affirming parental privilege to make medical decisions for handicapped newborns, while limiting the ability of the federal government to intervene. The ruling

The US 2nd Circuit Court of Appeals' 1984 decision United States v. University Hospital, State University Hospital of New York at Stony Brook set a significant precedent for affirming parental privilege to make medical decisions for handicapped newborns, while limiting the ability of the federal government to intervene. The ruling stemmed from the 1983 case involving an infant born with severe physical and mental congenital defects; the infant was only identified as Baby Jane Doe. After her parents opted against corrective surgery for some of her deformities, Baby Jane Doe became the epicenter of a national right-to-life debate that had been previously sparked one year prior with the case of Baby Doe, an Indiana infant born with similarly severe handicaps.

Created2011-05-11
172747-Thumbnail Image.png
Description

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.

Created2012-05-06
173915-Thumbnail Image.png
Description

The Baby Doe Rules represent the first attempt by the US government to directly intervene in treatment options for neonates born with congenital defects. The name of the rule comes from the controversial 1982 case of a Bloomington, Indiana infant Baby Doe, a name coined by the media. The Baby

The Baby Doe Rules represent the first attempt by the US government to directly intervene in treatment options for neonates born with congenital defects. The name of the rule comes from the controversial 1982 case of a Bloomington, Indiana infant Baby Doe, a name coined by the media. The Baby Doe Rules mandate that, as a requirement for federal funding, hospitals and physicians must provide maximal care to any impaired infant, unless select exceptions are met. If a physician or parent chooses to withhold full treatment when the exceptions are not met, they are liable for medical neglect. After a prolonged legal battle, President Ronald Reagan signed the law on 9 October 1984 as an amendment to the Child Abuse Prevention and Treatment Act (CAPTA) of 1974. Since then, the Baby Doe Rules have influenced both the parents' right to make medical decisions for their child and the way laws can affect treatment options in the US.

Created2011-05-12
173829-Thumbnail Image.png
Description

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same

The French flag model represents how embryonic cells receive and respond to genetic information and subsequently differentiate into patterns. Created by Lewis Wolpert in the late 1960s, the model uses the French tricolor flag as visual representation to explain how embryonic cells can interpret genetic code to create the same pattern even when certain pieces of the embryo are removed. Wolpert's model has provided crucial theoretical framework for investigating universal mechanisms of pattern formation during development.

Created2011-05-19
173770-Thumbnail Image.png
Description

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology

The p53 protein acts as a pivotal suppressor of inappropriate cell proliferation. By initiating suppressive effects through induction of apoptosis, cell senescence, or transient cell-cycle arrest, p53 plays an important role in cancer suppression, developmental regulation, and aging. Its discovery in 1979 was a product of research into viral etiology and the immunology of cancer. The p53 protein was first identified in a study of the role of viruses in cancer through its ability to form a complex with viral tumor antigens. In the same year, an immunological study of cancer also found p53 due to its immunoreactivity with tumor antisera. Although a series of studies found p53 through various routes, and various researchers called it different names, it was eventually confirmed that they had all encountered the same protein, p53.

Created2011-01-21
172833-Thumbnail Image.png
Description

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.

Created2012-02-16
172849-Thumbnail Image.png
Description

In a series of experiments between 1960 and 1965, Robert Geoffrey Edwards discovered how to make mammalian egg cells, or oocytes, mature outside of a female's body. Edwards, working at several research institutions in the UK during this period, studied in vitro fertilization (IVF) methods. He measured the conditions and

In a series of experiments between 1960 and 1965, Robert Geoffrey Edwards discovered how to make mammalian egg cells, or oocytes, mature outside of a female's body. Edwards, working at several research institutions in the UK during this period, studied in vitro fertilization (IVF) methods. He measured the conditions and timings for in vitro (out of the body) maturation of oocytes from diverse mammals including mice, rats, hamsters, pigs, cows, sheep, and rhesus monkeys, as well as humans. By 1965, he manipulated the maturation of mammalian oocytes in vitro, and discovered that the maturation process took about the same amount of time as maturation in the body, called in vivo. The timing of human oocyte maturation in vivo, extrapolated from Edwards's in vitro study, helped researchers calculate the timing for surgical removal of human eggs for IVF.

Created2014-08-18
172856-Thumbnail Image.png
Description

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing

In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing development. At a time when only a few developmental biologists studied cell death, or apoptosis, Saunders and his colleagues showed that researchers could use embryological experiments to uncover the causal mechanisms of apotosis. The researchers published many of their results in the 1962 paper 'Cellular death in morphogenesis of the avian wing.'

Created2014-03-07
173739-Thumbnail Image.png
Description

To Lynn M. Morgan, the Mary E. Woolley Professor of Anthropology at Mt. Holyoke College, nothing says life more than a dead embryo. In her easily readable book, Icons of Life: A Cultural History of Human Embryos, Morgan brings together cultural phenomena, ethics, and embryology to show that even dead

To Lynn M. Morgan, the Mary E. Woolley Professor of Anthropology at Mt. Holyoke College, nothing says life more than a dead embryo. In her easily readable book, Icons of Life: A Cultural History of Human Embryos, Morgan brings together cultural phenomena, ethics, and embryology to show that even dead embryos and fetuses have their own stories to tell. As an anthropologist, Morgan is interested in many things, including the science of embryology and its history. But she also wants to know how culture influences our views on embryos and the material practices that accompany their study. Her intent is to establish a relationship between specimens collected in the remote past and the contemporary cultural politics of abortion (p. xiii). The eight chapters in Icons of Life do not provide an exhaustive historical look at early American embryology, but they do weave together the Carnegie Institute of Washington Embryology Department (CIWED), its major human embryo collector Franklin Paine Mall, and how early twentieth-century science worked. Morgan ably describes the CIWEDÕs early foray into embryo collecting, but she wants to do more than just describe how embryos made their way to the laboratory. She wants us to ask why it was even possible for such a thing to happen without so much as a fuss being made from the public. This involves looking at culture.

Created2012-06-22
173767-Thumbnail Image.png
Description

German embryologist Viktor Hamburger came to the US in 1932 with a fellowship provided by the Rockefeller Foundation. Hamburger started his research in Frank Rattray Lillie's laboratory at the University of Chicago. His two-year work on the development of the central nervous system (CNS) in chick embryos was crystallized in

German embryologist Viktor Hamburger came to the US in 1932 with a fellowship provided by the Rockefeller Foundation. Hamburger started his research in Frank Rattray Lillie's laboratory at the University of Chicago. His two-year work on the development of the central nervous system (CNS) in chick embryos was crystallized in his 1934 paper, "The Effects of Wing Bud Extirpation on the Development of the Central Nervous System in Chick Embryos," published in The Journal of Experimental Zoology. Hamburger was able to use the microsurgical techniques that he had learned from Hans Spemann to show how wing buds influence the development of the CNS in chick embryos. This paper is one of several among Hamburger's important studies on chick embryos and represents the empirical and theoretical cornerstone for his further research on central-peripheral relations in the development of the nervous system.

Created2010-11-22