The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21
173122-Thumbnail Image.png
Description

In June 2017, the Iowa Supreme Court decided the case Plowman v. Fort Madison Community Hospital, or Plowman v. FMCH, and ruled that women who gave birth to children with severe disabilities could sue for wrongful birth in Iowa. Specifically, after Plowman v. FMCH, a woman could sue for wrongful

In June 2017, the Iowa Supreme Court decided the case Plowman v. Fort Madison Community Hospital, or Plowman v. FMCH, and ruled that women who gave birth to children with severe disabilities could sue for wrongful birth in Iowa. Specifically, after Plowman v. FMCH, a woman could sue for wrongful birth if she believed that her physicians failed to disclose evidence of fetal abnormalities that may have prompted her to terminate the pregnancy. Pamela and Jeremy Plowman filed the suit against the Fort Madison Community Hospital in Fort Madison, Iowa, alleging that hospital physicians failed to inform them that a prenatal test showed fetal abnormalities. Plowman v. FMCH gave women in Iowa the legal right to sue if physicians failed to tell them about fetal defects.

Created2019-05-23
173162-Thumbnail Image.png
Description

Hormone releasing intrauterine devices or hormonal IUDs are contraceptive devices placed in a woman’s uterus to prevent pregnancy by continuously releasing a low dose of certain hormones. Jouri Valter Tapani Luukkainen, a medical researcher at the University of Helsinki, introduced the first hormonal IUD in 1976. Luukkainen’s IUD was a

Hormone releasing intrauterine devices or hormonal IUDs are contraceptive devices placed in a woman’s uterus to prevent pregnancy by continuously releasing a low dose of certain hormones. Jouri Valter Tapani Luukkainen, a medical researcher at the University of Helsinki, introduced the first hormonal IUD in 1976. Luukkainen’s IUD was a plastic device shaped like a capital T. The horizontal shafts of the IUD held a reservoir of the hormone Levonorgestrel that the IUD slowly released at a constant rate over the IUD’s lifetime, allowing the hormonal IUD to remain effective for five to seven years. Women can use hormonal IUDs for long term contraception that requires no maintenance on the part of the user. The hormonal IUD provides women an option for reliable long-term birth control that does not require maintenance to remain effective.

Created2019-06-03
172747-Thumbnail Image.png
Description

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.

Created2012-05-06
173032-Thumbnail Image.png
Description

Much change has occurred in abortion laws over the past 50 years, this thesis tracks those changes principally through Supreme Court Cases, such as United States v. Milan Vuitch, Roe v. Wade, and Gonzales v. Planned Parenthood among others. The landscape of abortion law in the US continues to shift

Much change has occurred in abortion laws over the past 50 years, this thesis tracks those changes principally through Supreme Court Cases, such as United States v. Milan Vuitch, Roe v. Wade, and Gonzales v. Planned Parenthood among others. The landscape of abortion law in the US continues to shift today, as recently as 2017 with Plowman v. FMCH cases were being heard in courts that wrought subtle yet important changes in abortion law.

Created2021-02-18
Description

The copper intrauterine device, or IUD, is a long-term, reversible contraceptive first introduced by Howard Tatum and Jamie Zipper in 1967. Health care providers place an IUD inside a woman’s uterus to prevent pregnancy. Copper IUDs are typically made of T-shaped plastic with some portion covered with exposed copper. Prior

The copper intrauterine device, or IUD, is a long-term, reversible contraceptive first introduced by Howard Tatum and Jamie Zipper in 1967. Health care providers place an IUD inside a woman’s uterus to prevent pregnancy. Copper IUDs are typically made of T-shaped plastic with some portion covered with exposed copper. Prior to the invention of the first IUDs, women had few long-term options for safe and reliable birth control. Those options mostly consisted of barrier methods and the oral birth control pill, which were only effective if used correctly and consistently. For women seeking to control their fertility, a copper IUD was one of the first forms of long-term birth control that was highly effective and did not require consistent and regular action on the woman’s part to remain effective.

Created2018-07-05
172833-Thumbnail Image.png
Description

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.

Created2012-02-16
172708-Thumbnail Image.png
Description

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Created2013-09-10
173484-Thumbnail Image.png
Description

Gonzales v. Planned Parenthood Federation of America, Inc. (Gonzales v. Planned Parenthood) was the 2007 US Supreme Court case in which the Court declared the Partial Birth Abortion Ban Act of 2003 constitutional, making partial birth abortions illegal. In 2003, the US Congress passed the Partial-Birth Abortion Ban Act, which

Gonzales v. Planned Parenthood Federation of America, Inc. (Gonzales v. Planned Parenthood) was the 2007 US Supreme Court case in which the Court declared the Partial Birth Abortion Ban Act of 2003 constitutional, making partial birth abortions illegal. In 2003, the US Congress passed the Partial-Birth Abortion Ban Act, which prohibited an abortion technique called partial birth abortion. A partial birth abortion is similar to, but not the same as, a Dilation and Extraction or D&X abortion, which is what the Ban was intended to prohibit. Gonzales v. Planned Parenthood eventually reached the Supreme Court, where the Court ruled that the Ban was constitutional. In Gonzales v. Planned Parenthood, the Court ruled for the first time that it was constitutional to ban a method of abortion without providing an exception for cases where a pregnant woman’s life was endangered.

Created2018-06-01
173487-Thumbnail Image.png
Description

Milan Vuitch was an abortion provider in the twentieth century, who performed thousands of abortions in Washington, DC, at a time when abortions were legal only if they preserved the life or health of the pregnant woman. Vuitch was a frequent critic of Washington DC’s anti-abortion law and was arrested

Milan Vuitch was an abortion provider in the twentieth century, who performed thousands of abortions in Washington, DC, at a time when abortions were legal only if they preserved the life or health of the pregnant woman. Vuitch was a frequent critic of Washington DC’s anti-abortion law and was arrested multiple times for providing abortions that were not considered necessary to preserve the pregnant woman’s life. After several arrests, Vuitch challenged the law under which he had been arrested, and his case made its way to the Supreme Court in Vuitch v. United States. Although Vuitch technically lost in his Supreme Court case, the Court’s ruling expanded the meaning of health and Vuitch was able to continue providing abortions. Vuitch provided abortions to women who sought them but were not able to legally justify them, and his Supreme Court case was one of the earliest challenges to the abortion law.

Created2018-06-09