The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 39
Filtering by

Clear all filters

172850-Thumbnail Image.png
Description

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects

Carl Richard Moore was a professor and researcher at the University of Chicago in Chicago, Illinois who studied sex hormones in animals from 1916 until his death in 1955. Moore focused on the role of hormones on sex differentiation in offspring, the optimal conditions for sperm production, and the effects of vasectomy or testicular implants on male sex hormone production. Moore's experiments to create hermaphrodites in the laboratory contributed to the theory of a feedback loop between the pituitary and fetal gonadal hormones to control sex differentiation. Moore showed that the scrotal sac controls the temperature for the testes, which is necessary for sperm production. He also helped distinguish the hormones testosterone, and androsterone from testicular extracts.

Created2014-02-18
172851-Thumbnail Image.png
Description

The US President's Council on Bioethics was an organization headquartered in Washington D.C. that was chartered to advise then US President George W. Bush on ethical issues related to biomedical science and technology. In November 2001, US President George W. Bush created the President's Council on Bioethics (PCB). Convened during

The US President's Council on Bioethics was an organization headquartered in Washington D.C. that was chartered to advise then US President George W. Bush on ethical issues related to biomedical science and technology. In November 2001, US President George W. Bush created the President's Council on Bioethics (PCB). Convened during a nationwide cloning and embryonic stem cell research debate, the Council stated that it worked to address arguments about ethics from many different perspectives. The organization enacted a model for analyzing bioethical issues through deliberation instead of through the consensus approach. US President Barack Obama replaced the PCB in 2009 with his Presidential Commission for the Study of Bioethical Issues.

Created2014-02-18
172855-Thumbnail Image.png
Description

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of

By 2011, researchers in the US had established that non-invasive blood tests can accurately determine the gender of a human fetus as early as seven weeks after fertilization. Experts predicted that this ability may encourage the use of prenatal sex screening tests by women interested to know the gender of their fetuses. As more people begin to use non-invasive blood tests that accurately determine the sex of the fetus at 7 weeks, many ethical questions pertaining to regulation, the consequences of gender-imbalanced societies, and altered meanings of the parent-child relationship.

Created2014-03-23
172858-Thumbnail Image.png
Description

Frank Rattray Lillie's research on freemartins from 1914 to 1920 in the US led to the theory that hormones partly caused for sex differentiation in mammals. Although sometimes applied to sheep, goats, and pigs, the term freemartin most often refers to a sterile cow that has external female genitalia and

Frank Rattray Lillie's research on freemartins from 1914 to 1920 in the US led to the theory that hormones partly caused for sex differentiation in mammals. Although sometimes applied to sheep, goats, and pigs, the term freemartin most often refers to a sterile cow that has external female genitalia and internal male gonads and was born with a normal male twin. Lillie theorized that a freemartin is a genetic female whose process of sexual development from an undifferentiated zygote was suppressed or antagonized by her twin's release of male hormones via their shared blood circulation in utero. Despite publications of similar findings by physician Julius Tandler in Vienna, Austria, in 1910 and physician Karl Keller in Wiesensteig, Germany in 1916 prior to Lillie's research, Lillie often receives credit for the hormonal theory of sex differentiation in the freemartin. Lillie's study of freemartins, and the subsequent research by graduate students in Lillie's laboratory at the University of Chicago in Chicago, Illinois, prompted many embryologists to research sex differentiation and hermaphroditism in mammals.

Created2014-03-14
172860-Thumbnail Image.png
Description

Established in tandem with Singapore's national Biomedical Sciences Initiatives, the Bioethics Advisory Committee (BAC) was established by the Singapore Cabinet in December 2000 to examine the potential ethical, legal, and social issues arising from Singapore's biomedical research sector, and to recommend policy to Singapore's government. BAC's deliberations on embryonic stem

Established in tandem with Singapore's national Biomedical Sciences Initiatives, the Bioethics Advisory Committee (BAC) was established by the Singapore Cabinet in December 2000 to examine the potential ethical, legal, and social issues arising from Singapore's biomedical research sector, and to recommend policy to Singapore's government. BAC's deliberations on embryonic stem cell research helped shape the government policies that helped Singapore pursue its goal of becoming one of the biggest investors of embryonic stem cell research in the early twenty-first century.

Created2014-03-14
172889-Thumbnail Image.png
Description

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended policy to US President William Clinton's administration, which advocated for federal spending on the use of stem research on stem cells that came from embryos left over from in vitro fertilization (IVF) fertility treatments. Although NBAC's proposals never became legislation, the report helped shape public, private, and international discourse on stem cell research policy.

Created2014-04-01
173898-Thumbnail Image.png
Description

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean

This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell. This sketch is important to embryology because it is one of the most illustrative examples of preformationism, a theory of generation stating that each future member of any given species exists, fully formed though miniscule, within the gametic cells (sperm or eggs) of its parents. This theory was popular among naturalists in the eighteenth century.

Created2008-08-14
173923-Thumbnail Image.png
Description

Nicolaas Hartsoeker, a Dutch astronomer, optics manufacturer, and naturalist, was born 26 March 1656 in Gouda, Netherlands, and died 10 December 1725. His mother was Anna van der Mey and his father was Christiaan Hartsoeker, a prominent evangelical minister. His major contribution to embryology was his observations of human sperm

Nicolaas Hartsoeker, a Dutch astronomer, optics manufacturer, and naturalist, was born 26 March 1656 in Gouda, Netherlands, and died 10 December 1725. His mother was Anna van der Mey and his father was Christiaan Hartsoeker, a prominent evangelical minister. His major contribution to embryology was his observations of human sperm cells, which he claimed to be the first to see under a microscope. His sketch of the homunculus, a tiny preformed human he believed to exist in the head of spermatazoa, is his lasting scientific legacy in the field of embryology. This sketch was only a minor part of his first publication, Essai de Dioptrique (1694), which dealt primarily with the use of optical lenses in science. In subsequent years the sketch became iconic of the theory of embryological development known now as preformationism. Hartsoeker himself was a vocal adherent of spermist preformationism and is often cited as the originator of the idea.

Created2008-09-26
173924-Thumbnail Image.png
Description

Preformationism was a theory of embryological development used in the late seventeenth through the late eighteenth centuries. This theory held that the generation of offspring occurs as a result of an unfolding and growth of preformed parts. There were two competing models of preformationism: the ovism model, in which

Preformationism was a theory of embryological development used in the late seventeenth through the late eighteenth centuries. This theory held that the generation of offspring occurs as a result of an unfolding and growth of preformed parts. There were two competing models of preformationism: the ovism model, in which the location of these preformed parts prior to gestation was the maternal egg, and the spermism model, in which a preformed individual or homunculus was thought to exist in the head of each sperm. Preformationism was a widely-held theory by Enlightenment-era scientists, but by the early 1800s, most scientists had abandoned it, in part because higher magnification in microscopes enabled them to see the very earliest stages of embryos as small collections of cells. Prior to preformationism, naturalists who studied embryo development favored the theory of spontaneous generation in lower animals, such as flies, which appeared to arise from manure. In higher animals, however, scientists used the theory of epigenesis put forth by Aristotle, who said that maternal and paternal fluids came together in the uterus and solidified during early gestation into a fetus. Preformationism was the first theory of generation and development that applied to all organisms in the plant and animal kingdoms.

Created2008-08-11
173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17