The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 14
Filtering by

Clear all filters

175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21
173213-Thumbnail Image.png
Description

William Thornton Mustard was a surgeon in Canada during the twentieth century who developed surgical techniques to treat children who had congenital heart defects. Mustard has two surgeries named after him, both of which he helped to develop. The first of these surgeries replaces damaged or paralyzed muscles in individuals

William Thornton Mustard was a surgeon in Canada during the twentieth century who developed surgical techniques to treat children who had congenital heart defects. Mustard has two surgeries named after him, both of which he helped to develop. The first of these surgeries replaces damaged or paralyzed muscles in individuals who have polio, a virus that can cause paralysis. The other technique corrects a condition called the transposition of the great arteries (TGA) that is noticed at birth. Surgeons worldwide adopted that technique, leading to increased survival rates in infants afflicted with the condition. Mustard also published over 100 articles on congenital heart defects, surgical techniques, and the preparation of an artificial heart lung machine. Mustard helped perform the first blood transfusion of a newborn whose red blood cells (RBCs) had degraded, a condition called hemolytic anemia. Throughout his career, Mustard developed surgical techniques that increased the survival rates of infants and children with congenital and developmental disorders.

Created2017-02-11
173319-Thumbnail Image.png
Description

Ignaz Philipp Semmelweis demonstrated that the use of disinfectants could reduce the occurrence of puerperal fever in patients in nineteenth century Austria. Puerperal fever is a bacterial infection that can occur in the uterine tract of women after giving birth or undergoing an abortion. Semmelweis determined that puerperal fever is

Ignaz Philipp Semmelweis demonstrated that the use of disinfectants could reduce the occurrence of puerperal fever in patients in nineteenth century Austria. Puerperal fever is a bacterial infection that can occur in the uterine tract of women after giving birth or undergoing an abortion. Semmelweis determined that puerperal fever is contagious and argued that the unhygienic practices of physicians, like examining patients after performing autopsies, caused the spread of puerperal fever. He showed that if physicians washed their hands with a chloride solution before they attended patients, then they prevented those patients from developing puerperal fever. Despite being widely criticized during his lifetime, Semmelweis's research on the contagiousness of puerperal fever set a precedent for many scientists, and contributed to preventing the spread of puerperal fever.

Created2017-04-06
Description

Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the

Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the body and l-TGA where some oxygenated blood circulates. In the US, the Centers for Disease Control estimate that about 1,901 infants are born each year with TGA, or about one for every 2,000 births. Throughout history, physicians classified TGA as a condition that causes blue babies and hypothesized it was a fatal condition. With the development of corrective surgeries, studies on the causes of TGA, and improved prenatal diagnosis have allowed for the survival rate for those with TGA to approach almost one hundred percent.

Created2017-03-02
173376-Thumbnail Image.png
Description

Adib Jatene in Brazil was the first surgeon to successfully perform the arterial switch operation in 1975. The operation corrected a heart condition in infants called transposition of the great arteries (TGA). Left untreated, infants with TGA die, as their blood cannot supply oxygen to their bodies. Jatene’s operation became

Adib Jatene in Brazil was the first surgeon to successfully perform the arterial switch operation in 1975. The operation corrected a heart condition in infants called transposition of the great arteries (TGA). Left untreated, infants with TGA die, as their blood cannot supply oxygen to their bodies. Jatene’s operation became widely used to correct the condition. Aside from medical research, Jatene worked for years in politics and education, serving as Brazil’s minister of health and teaching thoracic surgery at the University of São Paulo.

Created2017-04-20
172747-Thumbnail Image.png
Description

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.

Created2012-05-06
173389-Thumbnail Image.png
Description

The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great

The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great arteries, abbreviated TGA, also called transposition of the great vessels, abbreviated TGV. TGA occurs when the pulmonary artery, which supplies deoxygenated blood to the lungs, and the aorta, which takes oxygenated blood to the body, are switched, or transposed. The switch between the aorta and pulmonary artery results in dangerously low levels of oxygen, a condition called cyanosis, in newborn infants, which causes them to die if a surgeon does not correct it.

Created2017-05-27
172833-Thumbnail Image.png
Description

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.

Created2012-02-16
172708-Thumbnail Image.png
Description

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Created2013-09-10
173794-Thumbnail Image.png
Description

Bicoid is the protein product of a maternal-effect gene unique to flies of the genus Drosophila . In 1988 Christiane Nüsslein-Volhard identified bicoid as the first known morphogen . A morphogen is a molecule that determines the fate and phenotype of a group of cells through a concentration

Bicoid is the protein product of a maternal-effect gene unique to flies of the genus Drosophila . In 1988 Christiane Nüsslein-Volhard identified bicoid as the first known morphogen . A morphogen is a molecule that determines the fate and phenotype of a group of cells through a concentration gradient across that developing region. The bicoid gradient, which extends across the anterior-posterior axis of Drosophila embryos, organizes the head and thorax.

Created2012-06-02