The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21
173910-Thumbnail Image.png
Description

A pioneer in experimental embryology, Ross Granville Harrison made numerous discoveries that advanced biology. One of the most significant was his adaptation of the hanging drop method from bacteriology to carry out the first tissue culture. This method allowed for further studies in embryology as well as experimental improvements in

A pioneer in experimental embryology, Ross Granville Harrison made numerous discoveries that advanced biology. One of the most significant was his adaptation of the hanging drop method from bacteriology to carry out the first tissue culture. This method allowed for further studies in embryology as well as experimental improvements in oncology, virology, genetics, and a number of other fields. Prior to Harrison's innovation, a number of scientists, including Julius Arnold, Gustav Born, Leo Loeb, and Gottlieb Haberlandt, had attempted to grow tissues in isolation in vitro and in vivo but with much less success than Harrison. In addition, Harrison contributed to the understanding of organization and differentiation.

Created2007-09-01
173911-Thumbnail Image.png
Description

As the third director of the Carnegie Institute of Washington s Department of Embryology, George Washington Corner made a number of contributions to the life sciences as well as to administration. Corner was born on 12 December 1889 in Baltimore, Maryland, near the newly established Johns Hopkins University. Although Corner

As the third director of the Carnegie Institute of Washington s Department of Embryology, George Washington Corner made a number of contributions to the life sciences as well as to administration. Corner was born on 12 December 1889 in Baltimore, Maryland, near the newly established Johns Hopkins University. Although Corner was not exposed to science much in school at a young age, he developed an early appreciation for science through conversations with his father about geography and by looking through the family's National Geographic magazines.

Created2007-11-01
173191-Thumbnail Image.png
Description

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo,

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo, who later became a famous surgeon and co-founder of the Mayo Clinic in Rochester, Minnesota, was a classmate of Mall's. Throughout his studies at Michigan, he was influenced by Corydon L. Ford, a professor of anatomy, Victor C. Vaughn, a biochemist and bacteriologist, and Henry Sewall, a physiologist.

Created2007-11-01
172747-Thumbnail Image.png
Description

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.

Created2012-05-06
172833-Thumbnail Image.png
Description

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a

Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.

Created2012-02-16
172917-Thumbnail Image.png
Description

Francesco Redi, son of Florentine physician Cecilia de' Ghinci and Gregorio Redi, was born in Arezzo, Italy, on 18 February 1626. He studied philosophy and medicine at the University of Pisa, graduating on 1 May 1647. A year later, Redi moved to Florence and registered at the Collegio Medico. There

Francesco Redi, son of Florentine physician Cecilia de' Ghinci and Gregorio Redi, was born in Arezzo, Italy, on 18 February 1626. He studied philosophy and medicine at the University of Pisa, graduating on 1 May 1647. A year later, Redi moved to Florence and registered at the Collegio Medico. There he served at the Medici Court as both the head physician and superintendent of the ducal pharmacy and foundry. Redi was also a member of the Accademia del Cimento, which flourished from 1657-1667. It was during this decade that Redi produced his most important works.

Created2007-11-01
172918-Thumbnail Image.png
Description

As one of the researchers involved in the development of the oral contraceptive pill, Min Chueh Chang helped to revolutionize the birth control movement. Although best known for his involvement with "the pill," Chang also made a number of discoveries throughout his scientific career involving a range of topics within

As one of the researchers involved in the development of the oral contraceptive pill, Min Chueh Chang helped to revolutionize the birth control movement. Although best known for his involvement with "the pill," Chang also made a number of discoveries throughout his scientific career involving a range of topics within the field of reproductive biology. He published nearly 350 articles in scientific journals. His dedication to his work left him with little time for family responsibilities, although shortly after his arrival in the United States in 1951, Chang married Isabelle Chin, an American-born Chinese woman with whom he would later have three children.

Created2007-11-08
172708-Thumbnail Image.png
Description

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene

In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Created2013-09-10
173736-Thumbnail Image.png
Description

Florence Rena Sabin had successful careers as both a researcher and public health reformer. When Johns Hopkins University Medical School opened, accepting women and men on the same basis, Sabin was one of the first to enter. After the successful completion of her MD degree, Sabin went on to become

Florence Rena Sabin had successful careers as both a researcher and public health reformer. When Johns Hopkins University Medical School opened, accepting women and men on the same basis, Sabin was one of the first to enter. After the successful completion of her MD degree, Sabin went on to become the first female faculty member and later full-time professor at Johns Hopkins. From 1924-1925, she was the first woman elected president of the American Association of Anatomists, the first woman elected to the National Academy of Sciences in 1925, and the first woman to become a full member of the Rockefeller Institute. Her research on the brain, the lymphatic system, and immunology was revolutionary, and her vast scientific knowledge and convincing personality greatly contributed to the passage of much needed public health reform legislation during her retirement years in Colorado.

Created2007-11-01