The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 19
Filtering by

Clear all filters

Description

In 2012, Jennifer Doudna, Emmanuelle Charpentier from the University of California, Berkeley, in Berkeley, California, and Umeå University in Umeå, Sweden, along with their colleagues discovered how bacteria use the CRISPR/cas 9 system to protect themselves from viruses. The researchers also proposed the idea of using the CRISPR/cas 9 system

In 2012, Jennifer Doudna, Emmanuelle Charpentier from the University of California, Berkeley, in Berkeley, California, and Umeå University in Umeå, Sweden, along with their colleagues discovered how bacteria use the CRISPR/cas 9 system to protect themselves from viruses. The researchers also proposed the idea of using the CRISPR/cas 9 system as a genome editing tool. In bacteria and archaea, researchers had found that CRISPR, which stands for clustered regularly interspaced short palindromic repeats, and CRISPR associated proteins, or cas, helped organisms recognize and silence the genetic material of viruses that have infected the cell before. In their experiment, Doudna, Charpentier, and their colleagues found how the specific molecules in bacteria can recognize and cut specific DNA sequences of invading viruses. Doudna, Charpentier, and their colleagues’ discovery of the CRISPR/cas 9 mechanism and proposal of using CRISPR/cas 9 for genetic editing led to the successful engineering of CRISPR/cas 9 as a novel method of editing genomes.

Created2017-10-19
Description

In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of

In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of organisms, DNA, by targeting specific sequences of DNA and subsequently replacing those targeted sequences with different DNA sequences. Church and his team used RNA-guided Cas 9 technology to edit the genetic information in human cells. Church and his colleagues also created a database that identified 190,000 unique guide RNAs for targeting almost half of the human genome that codes for proteins. In RNA-Guided Human Genome Engineering via Cas 9, the authors demonstrated that RNA-guided Cas 9 was a robust and simple tool for genetic engineering, which has enabled scientists to more easily manipulate genomes for the study of biological processes and genetic diseases.

Created2017-12-27
173210-Thumbnail Image.png
Description

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any reason besides avoiding sex-linked disorders, or genetic disorders that only affect a particular sex. When couples have no family history of a sex-linked disease, the use of reproductive technology for sex selection raises ethical questions about the application of sex selection technology to fulfill parental desires. “Use of reproductive technology for sex selection for nonmedical purposes” examines the ethical debate surrounding sex selection for nonmedical purposes and is an educational and ethical reference for physicians who are considering offering those services in their practices.

Created2019-05-27
Description

Mary-Claire King studied genetics in the US in the twenty-first century. King identified two genes associated with the occurrence of breast cancer, breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2). King showed that mutated BRCA1 and BRCA2 genes cause two types of reproductive cancer, breast and ovarian cancer. Because

Mary-Claire King studied genetics in the US in the twenty-first century. King identified two genes associated with the occurrence of breast cancer, breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2). King showed that mutated BRCA1 and BRCA2 genes cause two types of reproductive cancer, breast and ovarian cancer. Because of King’s discovery, doctors can screen women for the inheritance of mutated BRCA1 and BRCA2 genes to evaluate their risks for breast and ovarian cancer. King also demonstrated the genetic similarities between chimpanzees and humans and helped to identify victims of human rights abuses using genetics. King's identification of the BRCA genes and their relationship to breast and ovarian cancer, both reproductive cancers, has allowed physicians to screen thousands of women for the genes and for those women to choose to undergo preventative cancer treatment to lower their risk of cancer.

Created2017-08-23
Description

Robert Guthrie developed a method to test infants for phenylketonuria (PKU) in the United States during the twentieth century. PKU is an inherited condition that causes an amino acid called phenylalanine to build to toxic levels in the blood. Untreated, PKU causes mental disabilities. Before Guthrie’s test, physicians rarely tested

Robert Guthrie developed a method to test infants for phenylketonuria (PKU) in the United States during the twentieth century. PKU is an inherited condition that causes an amino acid called phenylalanine to build to toxic levels in the blood. Untreated, PKU causes mental disabilities. Before Guthrie’s test, physicians rarely tested infants for PKU and struggled to diagnosis it. Guthrie’s test enabled newborns to be quickly and cheaply screened at birth and then treated for PKU if necessary, preventing irreversible neurological damage. After developing the test, Guthrie traveled the world to advocate for mass screening for PKU in newborns. Along with his PKU test, Guthrie developed newborn screens for maple syrup urine disease and for galactosemia. Guthrie’s test for PKU and campaign for newborn screening led to the early diagnoses of PKU in thousands of infants, preventing those infants from developing mental disabilities.

Created2017-02-23
173440-Thumbnail Image.png
Description

In 2015, Junjiu Huang and his colleagues reported their attempt to enable CRISPR/cas 9-mediated gene editing in nonviable human zygotes for the first time at Sun Yat-Sen University in Guangzhou, China. Their article, CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes, was published in Protein and Cell. Nonviable zygotes are

In 2015, Junjiu Huang and his colleagues reported their attempt to enable CRISPR/cas 9-mediated gene editing in nonviable human zygotes for the first time at Sun Yat-Sen University in Guangzhou, China. Their article, CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes, was published in Protein and Cell. Nonviable zygotes are sperm-fertilized eggs that cannot develop into a fetus. Researchers previously developed the CRISPR/cas 9 gene editing tool, which is a system that originated from bacteria as a defense mechanism against viruses. In their article, Huang and his team demonstrate that CRISPR/cas-9 gene editing can be used to correct a mutation in zygotes, or sperm-fertilized egg cells. However, they report that using CRISPR/cas 9 to edit those nonviable human zygotes led to off-target changes and, therefore, to unintended mutations in the human genome. Before Huang and his colleagues' experiment, CRISPR/cas 9 had never been used on human zygotes. In their article, Huang and his colleagues demonstrated the need to improve CRISPR/cas 9 gene editing accuracy before using it for gene therapy to treat and correct genetic diseases in humans.

Created2017-11-08
173446-Thumbnail Image.png
Description

David Baltimore studied viruses and the immune system in the US during the twentieth century. In 1975, Baltimore was awarded the Nobel Prize in Physiology or Medicine for discovering reverse transcriptase, the enzyme used to transfer information from RNA to DNA. The discovery of reverse transcriptase contradicted the central dogma

David Baltimore studied viruses and the immune system in the US during the twentieth century. In 1975, Baltimore was awarded the Nobel Prize in Physiology or Medicine for discovering reverse transcriptase, the enzyme used to transfer information from RNA to DNA. The discovery of reverse transcriptase contradicted the central dogma of biology at the time, which stated that the transfer of information was unidirectional from DNA, RNA, to protein. Baltimore’s research on reverse transcriptase led to the discovery of retroviruses, which accelerated the development of treatments for human immunodeficiency virus or HIV and cancer vaccines. Baltimore also influenced public policy and opinion on genetic engineering. In 1975, he helped organize the Asilomar Conference in Pacific Grove, California, which discussed the regulation of recombinant DNA or the DNA created using multiple sources of genetic material. Baltimore’s research demonstrated how retroviruses replicate and infect cells, and his influence on the Asilomar Conference on Recombinant DNA has guided discussions about regulating biotechnology.

Created2017-12-27
173447-Thumbnail Image.png
Description

In 2007, Dennis Lo and his colleagues used digital polymerase chain reaction or PCR to detect trisomy 21 in maternal blood, validating the method as a means to detect fetal chromosomal aneuploidies, or an abnormal number of chromosomes in a cell. The team conducted their research at the Chinese University

In 2007, Dennis Lo and his colleagues used digital polymerase chain reaction or PCR to detect trisomy 21 in maternal blood, validating the method as a means to detect fetal chromosomal aneuploidies, or an abnormal number of chromosomes in a cell. The team conducted their research at the Chinese University of Hong Kong in Hong Kong, Hong Kong, and at the Boston University in Boston, Massachusetts. Because small amounts of fetal DNA appear in maternal blood during pregnancy, Lo and his team hypothesized that they could detect fetal chromosomal aneuploidy trisomy 21, or Down’s syndrome, in a sample of maternal blood. The group diagnosed Down’s syndrome in unborn fetuses by first taking a maternal blood sample, then amplifying the small amounts of fetal DNA in the maternal blood using digital PCR, and applying two genetic methods to that sample. Lo and his colleagues’ experiment demonstrated the accuracy of a novel, noninvasive method for fetal chromosomal aneuploidy testing that can enable people to make informed decisions about their pregnancies.

Created2017-11-08
173452-Thumbnail Image.png
Description

In 2007, Philippe Horvath and his colleagues explained how bacteria protect themselves against viruses at Danisco, a Danish food company, in Dangé-Saint-Romain, France. Horvath and his team worked to improve the lifespan of bacteria cultures for manufacturing yogurt and ice cream. Specifically, they focused on bacteria’s resistance to bacteriophages, or

In 2007, Philippe Horvath and his colleagues explained how bacteria protect themselves against viruses at Danisco, a Danish food company, in Dangé-Saint-Romain, France. Horvath and his team worked to improve the lifespan of bacteria cultures for manufacturing yogurt and ice cream. Specifically, they focused on bacteria’s resistance to bacteriophages, or viruses that infect bacteria. Horvath and his colleagues found that the bacteria used to culture yogurt, Streptococcus thermophilus, has an adaptive immune system that can target specific viruses that have previously infected the bacteria. The immune system is called the CRISPR/cas system, or the clustered regularly interspaced short palindromic repeats/CRISPR associated protein system. Horvath and his colleagues explained how bacteria use CRISPR/cas as an immune system to target viruses and protect themselves from infection. The discovery informed the development of CRISPR/cas as a gene editing tool to modify bacterial, animal, and human genomes.

Created2017-11-15
173254-Thumbnail Image.png
Description

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm cells that carry male-producing Y chromosomes move through liquid faster than the cells that carry female-producing X chromosomes. As a result of his findings, Ericsson suggested suspending a semen sample in a viscous liquid made from albumin protein, and collecting only sperm that quickly pass through the liquid. Shortly after Ericsson described his method, researchers demonstrated that it was effective for sex selection. However, later studies contested those results. Despite that, the Ericsson method is still utilized by couples in 2018 as a means of sex selection and was the first sperm separation technique used in combination with artificial insemination to enable people to select the sex of their children.

Created2019-09-20