The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 17
Filtering by

Clear all filters

173886-Thumbnail Image.png
Description

Orchiopexy, also known as orchidopexy, is a surgical technique that can correct cryptorchidism and was successfully performed for one of the first times in 1877 in Scotland. Cryptorchidism, a condition where one or both of the testicles fail to descend before birth, is one of the most common male genital

Orchiopexy, also known as orchidopexy, is a surgical technique that can correct cryptorchidism and was successfully performed for one of the first times in 1877 in Scotland. Cryptorchidism, a condition where one or both of the testicles fail to descend before birth, is one of the most common male genital birth defects, affecting approximately 2 to 8 percent of full-term male infants, and around 33 percent of premature infants. Typically in the womb, male testes form within the abdomen, then descend into the scrotal area between twenty-five to thirty-five weeks’ gestation. If one or both testicles fail to descend before birth, physicians use orchiopexy to surgically relocate the undescended testes to their normal position in the scrotum. According to many researchers, most cases of cryptorchidism do not resolve on their own, and therefore, orchiopexy surgery is often necessary. Orchiopexy, when performed before puberty, can decrease the risk of testicular cancer and infertility associated with cryptorchidism.

Created2020-10-15
173908-Thumbnail Image.png
Description

First manufactured in 1988 by Serono laboratories, recombinant gonadotropins are synthetic hormones that can stimulate egg production in women for use in fertility treatments. Recombinant gonadotropins are artificially created using recombinant DNA technology, a technology that joins together DNA from different organisms. In vertebrates, naturally-occurring gonadotropins regulate the growth and

First manufactured in 1988 by Serono laboratories, recombinant gonadotropins are synthetic hormones that can stimulate egg production in women for use in fertility treatments. Recombinant gonadotropins are artificially created using recombinant DNA technology, a technology that joins together DNA from different organisms. In vertebrates, naturally-occurring gonadotropins regulate the growth and function of the gonads, known as testes in males and ovaries in females. Medical professionals can derive female gonadotropins from the urine of pregnant and post-menopausal women, often using it to facilitate in vitro fertilization, or IVF. With the rapid development of assisted reproductive technologies like IVF, demand for human-derived gonadotropins rose to a global yearly demand of 120 million liters of urine by the beginning of the twenty-first century, which resulted in a demand that could not be met by traditional technologies at that time. Therefore, researchers created recombinant gonadotropins to establish a safer and more consistent method of human gonadotropin collection that met the high demand for its use in fertility treatments.

Created2020-10-26
173210-Thumbnail Image.png
Description

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any reason besides avoiding sex-linked disorders, or genetic disorders that only affect a particular sex. When couples have no family history of a sex-linked disease, the use of reproductive technology for sex selection raises ethical questions about the application of sex selection technology to fulfill parental desires. “Use of reproductive technology for sex selection for nonmedical purposes” examines the ethical debate surrounding sex selection for nonmedical purposes and is an educational and ethical reference for physicians who are considering offering those services in their practices.

Created2019-05-27
173254-Thumbnail Image.png
Description

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm cells that carry male-producing Y chromosomes move through liquid faster than the cells that carry female-producing X chromosomes. As a result of his findings, Ericsson suggested suspending a semen sample in a viscous liquid made from albumin protein, and collecting only sperm that quickly pass through the liquid. Shortly after Ericsson described his method, researchers demonstrated that it was effective for sex selection. However, later studies contested those results. Despite that, the Ericsson method is still utilized by couples in 2018 as a means of sex selection and was the first sperm separation technique used in combination with artificial insemination to enable people to select the sex of their children.

Created2019-09-20
Description

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and gynecology researcher and physician, co-wrote the book. Shettles developed the methods detailed in the book during the 1960s. Although the authors claim a high success rate, some researchers have contested the validity of the methods proposed in Your Baby’s Sex: Now You Can Choose. Despite contradicting evidence for the effectiveness of the methods, the book itself has remained popular throughout its forty consecutive years in print. Since its original publication, Your Baby’s Sex: Now You Can Choose has reached a large audience, with over 1.5 million copies of the book sold worldwide, while adding to the controversy about the ethics of sex selection research.

Created2019-10-31
172987-Thumbnail Image.png
Description

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm sorting, increased interest in, and influence of, sex selection within the global society. The purpose of explaining the history, interest, development, and impact of various sex selection methods in the mid-twentieth century based on the information that is available on them today is to show couples which methods have failed and provide them with the knowledge necessary to make an informed decision on how they choose to go about utilizing methods of sex selection.

Created2021-02-26
172997-Thumbnail Image.png
Description

In 2007, Ishola Agbaje, Deirdre Rogers, Carmel McVicar, Neil McClure, Albert Atkinson, Con Mallidis, and Sheena Lewis published “Insulin Dependent Diabetes Mellitus: Implications for Male Reproductive Function,” hereby “Diabetes Mellitus: Implications,” in the journal Human Reproduction. In their article, the authors explore the effects of elevated blood sugar in the

In 2007, Ishola Agbaje, Deirdre Rogers, Carmel McVicar, Neil McClure, Albert Atkinson, Con Mallidis, and Sheena Lewis published “Insulin Dependent Diabetes Mellitus: Implications for Male Reproductive Function,” hereby “Diabetes Mellitus: Implications,” in the journal Human Reproduction. In their article, the authors explore the effects of elevated blood sugar in the form of diabetes mellitus on the quality of male sperm. When investigating possible fertility issues, fertility specialists often study semen, the male reproductive fluid that contains sperm cells to detect changes in sperm count, movement, and structure. In “Diabetes Mellitus: Implications,” the authors use both conventional semen analysis and technical molecular methods to assess the quality of sperm from diabetic and non-diabetic men. The authors found that men with diabetes had higher levels of DNA damage within their sperm and highlighted a need for additional research on the link between diabetes and male reproductive health.

Created2021-03-17
172942-Thumbnail Image.png
Description

David Michael Rorvik is a science journalist who publicized advancements in the field of reproductive medicine during the late twentieth century. Rorvik wrote magazine articles and books in which he discussed emerging methods and technologies that contributed to the progression of reproductive health, including sex determination, in vitro fertilization, and

David Michael Rorvik is a science journalist who publicized advancements in the field of reproductive medicine during the late twentieth century. Rorvik wrote magazine articles and books in which he discussed emerging methods and technologies that contributed to the progression of reproductive health, including sex determination, in vitro fertilization, and human cloning. During that time, those topics were controversial and researchers often questioned Rorvik’s work for accuracy. Rorvik contributed to the field of reproductive medicine by communicating methods of reproductive intervention and contributing to the controversy around new developmental medicine technologies.

Created2018-07-05
Description

In 1984, human genetics and reproduction researcher and physician Joseph D. Schulman founded the Genetics and IVF Institute, an international organization that provides infertility treatment and genetic services to patients. IVF stands for in vitro fertilization, an infertility treatment in which a female egg is fertilized by male sperm outside

In 1984, human genetics and reproduction researcher and physician Joseph D. Schulman founded the Genetics and IVF Institute, an international organization that provides infertility treatment and genetic services to patients. IVF stands for in vitro fertilization, an infertility treatment in which a female egg is fertilized by male sperm outside of the female body. GIVF is headquartered in Fairfax, Virginia, in association with Inova Health System, formerly called the Fairfax Hospital Association, one of the largest regional hospital systems in the United States. GIVF offers multiple infertility and genetic services including IVF, donor egg and donor sperm programs, prenatal genetic diagnostic testing, and sex selection technology. GIVF was one of the first medical facilities in the United States to offer IVF and has innovated other infertility treatments and genetic services.

Created2019-02-19
172804-Thumbnail Image.png
Description

In the twentieth century, researchers developed the oral glucose tolerance test, or OGTT, as a method to diagnose different types of diabetes, a medical condition that causes blood sugar levels to become abnormally high. During the test, a healthcare provider measures a person’s blood sugar levels before and after the

In the twentieth century, researchers developed the oral glucose tolerance test, or OGTT, as a method to diagnose different types of diabetes, a medical condition that causes blood sugar levels to become abnormally high. During the test, a healthcare provider measures a person’s blood sugar levels before and after the person consumes a predetermined amount of glucose solution. While not exclusively used for pregnant women, an OGTT may test for gestational diabetes which, according to the International Diabetes Federation, affected one in six pregnancies worldwide in 2019. Generally, the results from an OGTT can inform a patient and her physician how her body is responding to glucose during pregnancy, and high levels may increase her risk of developing adverse pregnancy outcomes such as heavy bleeding during delivery and a high blood pressure condition known as preeclampsia. An OGTT can help to accurately diagnose, treat, and monitor gestational diabetes in pregnant women, which can reduce health and pregnancy complications for the woman and the fetus.

Created2020-12-09