The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 20
Filtering by

Clear all filters

Description

The male body, followed by male reproductive organs from which the sperm originates, is depicted from top to bottom at the left. Under the male reproductive organs is a diagram of a single sperm. To the right of the sperm diagram, the physiological and morphological changes a sperm undergoes to

The male body, followed by male reproductive organs from which the sperm originates, is depicted from top to bottom at the left. Under the male reproductive organs is a diagram of a single sperm. To the right of the sperm diagram, the physiological and morphological changes a sperm undergoes to fertilize an egg are depicted from left to right. Each change is associated with a light pink rectangle background. Each light pink rectangle corresponds to the location of the sperm within the female reproductive organs, which is depicted above it. In addition, a molecular view of each change is directly under each light pink rectangle.
It is important to note the background color of the illustration. A blue to purple gradient depicts the two phases of sperm capacitation: sperm capacitation is in blue, and the acrosome reaction is in purple. It is still unclear where the two phases differentiate and thus a gradient is used as opposed to two distinct colors. The title location for each phase designates the approximate start of each phase.

Created2019-09-23
173210-Thumbnail Image.png
Description

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any reason besides avoiding sex-linked disorders, or genetic disorders that only affect a particular sex. When couples have no family history of a sex-linked disease, the use of reproductive technology for sex selection raises ethical questions about the application of sex selection technology to fulfill parental desires. “Use of reproductive technology for sex selection for nonmedical purposes” examines the ethical debate surrounding sex selection for nonmedical purposes and is an educational and ethical reference for physicians who are considering offering those services in their practices.

Created2019-05-27
173243-Thumbnail Image.png
Description

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a

In February 1953, Linus Pauling and Robert Brainard Corey, two scientists working at the California Institute of Technology in Pasadena, California, proposed a structure for deoxyribonucleic acid, or DNA, in their article “A Proposed Structure for the Nucleic Acids,” henceforth “Nucleic Acids.” In the article, Pauling and Corey suggest a model for nucleic acids, including DNA, that consisted of three nucleic acid strands wound together in a triple helix. “Nucleic Acids” was published in Proceedings of the National Academy of Sciences shortly after scientists came to the consensus that genes, the biological factors that control how organisms develop, contained DNA. Though scientists proved Pauling and Corey’s model incorrect, “Nucleic Acids” helped scientists understand DNA’s structure and function as genetic material.

Created2019-08-26
173254-Thumbnail Image.png
Description

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm cells that carry male-producing Y chromosomes move through liquid faster than the cells that carry female-producing X chromosomes. As a result of his findings, Ericsson suggested suspending a semen sample in a viscous liquid made from albumin protein, and collecting only sperm that quickly pass through the liquid. Shortly after Ericsson described his method, researchers demonstrated that it was effective for sex selection. However, later studies contested those results. Despite that, the Ericsson method is still utilized by couples in 2018 as a means of sex selection and was the first sperm separation technique used in combination with artificial insemination to enable people to select the sex of their children.

Created2019-09-20
Description

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and gynecology researcher and physician, co-wrote the book. Shettles developed the methods detailed in the book during the 1960s. Although the authors claim a high success rate, some researchers have contested the validity of the methods proposed in Your Baby’s Sex: Now You Can Choose. Despite contradicting evidence for the effectiveness of the methods, the book itself has remained popular throughout its forty consecutive years in print. Since its original publication, Your Baby’s Sex: Now You Can Choose has reached a large audience, with over 1.5 million copies of the book sold worldwide, while adding to the controversy about the ethics of sex selection research.

Created2019-10-31
173144-Thumbnail Image.png
Description

William Thomas Astbury studied the structures of fibrous materials, including fabrics, proteins, and deoxyribonucleic acid, or DNA, in England during the twentieth century. Astbury employed X-ray crystallography, a technique in which scientists use X-rays to learn about the molecular structures of materials. Astbury worked at a time when scientists had

William Thomas Astbury studied the structures of fibrous materials, including fabrics, proteins, and deoxyribonucleic acid, or DNA, in England during the twentieth century. Astbury employed X-ray crystallography, a technique in which scientists use X-rays to learn about the molecular structures of materials. Astbury worked at a time when scientists had not yet identified DNA’s structure or function in genes, the genetic components responsible for how organisms develop and reproduce. He was one of the first scientists to use X-ray crystallography to study the structure of DNA. According to historians, Astbury helped establish the field of molecular biology as he connected microscopic changes in the structure of materials to changes in their large-scale properties. Astbury and his images helped scientists to understand the structure of DNA and its role in genetics.

Created2019-06-03
173199-Thumbnail Image.png
Description

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction

In 1944, Oswald Avery, Colin MacLeod, and Maclyn McCarty published an article in which they concluded that genes, or molecules that dictate how organisms develop, are made of deoxyribonucleic acid, or DNA. The article is titled “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III,” hereafter “Transformation.” The authors isolated, purified, and characterized genes within bacteria and found evidence that those genes were made of DNA and not protein. Though scientists were initially skeptical that genes were made of DNA, they later recognized that the data reported in “Transformation” were clear evidence that DNA was genetic material, a revelation that furthered research about how organisms grow, develop, and pass on traits to offspring.

Created2019-07-08
173110-Thumbnail Image.png
Description

Carol Downer was a reproductive health and abortion rights activist in the twentieth and twenty-first centuries in the US and other countries. During the late 1960s, many women reported knowing little about female anatomy and receiving little information from their physicians. Downer advocated for women’s reproductive anatomy education and encouraged

Carol Downer was a reproductive health and abortion rights activist in the twentieth and twenty-first centuries in the US and other countries. During the late 1960s, many women reported knowing little about female anatomy and receiving little information from their physicians. Downer advocated for women’s reproductive anatomy education and encouraged women to not rely on the intervention of a medical doctor for all reproductive issues. Downer demonstrated how to perform a vaginal self-examination to many women and taught women around the world how to provide safer in-home abortions when abortions were illegal. Downer helped start clinics throughout California which provided some of the first legal abortions in the US. With her reproductive health activism, Downer spread reproductive health self-help tactics throughout the US and the world, thereby improving women’s access to health information.

Created2019-04-09
175292-Thumbnail Image.jpg
Description

The first successful cloning of a gaur in 2000 by Advanced Cell Technology involved the cells of two animals: an egg cell from a domestic cow and a skin cell from a gaur. The researchers extracted the egg cell from the ovary of the domestic cow and the skin cell

The first successful cloning of a gaur in 2000 by Advanced Cell Technology involved the cells of two animals: an egg cell from a domestic cow and a skin cell from a gaur. The researchers extracted the egg cell from the ovary of the domestic cow and the skin cell from the skin of the gaur. First, the researchers performed nuclear transplantation on the egg cell of the cow, during which they removed the nucleus of the egg cell. The mitochondria of the egg cell remained intact inside the cell. Next, the researchers fused the egg cell of the cow and the skin cell of the gaur by applying a single electric pulse. That process resulted in a cellular complex that contained the nucleus from the gaur and the mitochondria from the cow. That cellular complex was then placed into the uterus of a different domestic cow. Once the cellular complex developed into a Day 46 fetus, researchers conducted morphological and genetic tests. The fetus then further developed into a gaur calf, which lived for forty-eight hours after birth.

Created2019-06-11
172987-Thumbnail Image.png
Description

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm sorting, increased interest in, and influence of, sex selection within the global society. The purpose of explaining the history, interest, development, and impact of various sex selection methods in the mid-twentieth century based on the information that is available on them today is to show couples which methods have failed and provide them with the knowledge necessary to make an informed decision on how they choose to go about utilizing methods of sex selection.

Created2021-02-26