The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 25
Filtering by

Clear all filters

173928-Thumbnail Image.png
Description

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also

Rosalind Elsie Franklin worked with X-ray crystallography at King's College London, UK, and she helped determine the helical structure of DNA in the early 1950s. Franklin's research helped establish molecular genetics, a field that investigates how heredity works on the molecular level. The discovery of the structure of DNA also made future research possible into the molecular basis of embryonic development, genetic disorders, and gene manipulation.

Created2013-11-17
173210-Thumbnail Image.png
Description

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any

In June 2015, the Ethics Committee of the American Society for Reproductive Medicine, or ASRM, published “Use of reproductive technology for sex selection for nonmedical reasons” in Fertility and Sterility. In the report, the Committee presents arguments for and against the use of reproductive technology for sex selection for any reason besides avoiding sex-linked disorders, or genetic disorders that only affect a particular sex. When couples have no family history of a sex-linked disease, the use of reproductive technology for sex selection raises ethical questions about the application of sex selection technology to fulfill parental desires. “Use of reproductive technology for sex selection for nonmedical purposes” examines the ethical debate surrounding sex selection for nonmedical purposes and is an educational and ethical reference for physicians who are considering offering those services in their practices.

Created2019-05-27
173254-Thumbnail Image.png
Description

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm

In 1973, Ronald Ericsson developed the Ericsson method, which is a technique used to separate human male sperm cells by their genetic material. Ericsson, a physician and reproduction researcher, developed the method while conducting research on sperm isolation in Berlin, Germany, in the early 1970s. He found that the sperm cells that carry male-producing Y chromosomes move through liquid faster than the cells that carry female-producing X chromosomes. As a result of his findings, Ericsson suggested suspending a semen sample in a viscous liquid made from albumin protein, and collecting only sperm that quickly pass through the liquid. Shortly after Ericsson described his method, researchers demonstrated that it was effective for sex selection. However, later studies contested those results. Despite that, the Ericsson method is still utilized by couples in 2018 as a means of sex selection and was the first sperm separation technique used in combination with artificial insemination to enable people to select the sex of their children.

Created2019-09-20
Description

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and

In the book Your Baby’s Sex: Now You Can Choose, David Michael Rorvik and Landrum Brewer Shettles describe methods that couples can use prior to and during conception that will increase the chances of producing a child of their desired sex. Rorvik, a science writer, and Shettles, an obstetrics and gynecology researcher and physician, co-wrote the book. Shettles developed the methods detailed in the book during the 1960s. Although the authors claim a high success rate, some researchers have contested the validity of the methods proposed in Your Baby’s Sex: Now You Can Choose. Despite contradicting evidence for the effectiveness of the methods, the book itself has remained popular throughout its forty consecutive years in print. Since its original publication, Your Baby’s Sex: Now You Can Choose has reached a large audience, with over 1.5 million copies of the book sold worldwide, while adding to the controversy about the ethics of sex selection research.

Created2019-10-31
172715-Thumbnail Image.png
Description

In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment

In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment begins within the first three months of the newborn's life. In the early 1970s, regions in Canada and the US had implemented screening programs to diagnose and treat CH as quickly as possible after the infant's birth. By 1991 many other countries had adopted the early screening program, and Fisher estimated that 10 to 12 million newborns per year were tested in the early 1990s. The screening programs, along with physician education and improved screening techniques, such as radioimmunoassay, helped significantly reduce the incidence of abnormal newborn development resulting from untreated congenital hypothyroidism.

Created2013-12-31
172738-Thumbnail Image.png
Description

Our Bodies, Ourselves, a succession to a pamphlet of resources pulled from co-ops of women in and around Boston, Massachusetts was published in New York in 1973 by Simon and Schuster. Retitled from the original Women and Their Bodies, Our Bodies, Ourselves was an effort by a group of educated,

Our Bodies, Ourselves, a succession to a pamphlet of resources pulled from co-ops of women in and around Boston, Massachusetts was published in New York in 1973 by Simon and Schuster. Retitled from the original Women and Their Bodies, Our Bodies, Ourselves was an effort by a group of educated, middle class women to reinforce women's ownership of their bodies. There have been eight editions of Our Bodies, Ourselves, as well as sequels such as Our Bodies, Ourselves: Pregnancy and Birth and Our Bodies, Ourselves: Menopause. Our Bodies, Ourselves has sold more than four million copies and been printed in twenty foreign-language editions.

Created2013-06-21
172987-Thumbnail Image.png
Description

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm

By questioning methods of sex selection since their early development, and often discovering that they are unreliable, scientists have increased the creative and technological capacity of the field of reproductive health. The presentation of these methods to the public, via published books on timing methods and company websites for sperm sorting, increased interest in, and influence of, sex selection within the global society. The purpose of explaining the history, interest, development, and impact of various sex selection methods in the mid-twentieth century based on the information that is available on them today is to show couples which methods have failed and provide them with the knowledge necessary to make an informed decision on how they choose to go about utilizing methods of sex selection.

Created2021-02-26
172942-Thumbnail Image.png
Description

David Michael Rorvik is a science journalist who publicized advancements in the field of reproductive medicine during the late twentieth century. Rorvik wrote magazine articles and books in which he discussed emerging methods and technologies that contributed to the progression of reproductive health, including sex determination, in vitro fertilization, and

David Michael Rorvik is a science journalist who publicized advancements in the field of reproductive medicine during the late twentieth century. Rorvik wrote magazine articles and books in which he discussed emerging methods and technologies that contributed to the progression of reproductive health, including sex determination, in vitro fertilization, and human cloning. During that time, those topics were controversial and researchers often questioned Rorvik’s work for accuracy. Rorvik contributed to the field of reproductive medicine by communicating methods of reproductive intervention and contributing to the controversy around new developmental medicine technologies.

Created2018-07-05
172801-Thumbnail Image.png
Description

Teratogens are substances that may produce physical or functional defects in the human embryo or fetus after the pregnant woman is exposed to the substance. Alcohol and cocaine are examples of such substances. Exposure to the teratogen affects the fetus or embryo in a variety of ways, such as the

Teratogens are substances that may produce physical or functional defects in the human embryo or fetus after the pregnant woman is exposed to the substance. Alcohol and cocaine are examples of such substances. Exposure to the teratogen affects the fetus or embryo in a variety of ways, such as the duration of exposure, the amount of teratogenic substance, and the stage of development the embryo or fetus is in during the exposure. Teratogens may affect the embryo or fetus in a number of ways, causing physical malformations, problems in the behavioral or emotional development of the child, and decreased intellectual quotient IQ in the child. Additionally, teratogens may also affect pregnancies and cause complications such as preterm labors, spontaneous abortions, or miscarriages. Teratogens are classified into four types: physical agents, metabolic conditions, infection, and finally, drugs and chemicals.

Created2014-01-22
Description

In 1984, human genetics and reproduction researcher and physician Joseph D. Schulman founded the Genetics and IVF Institute, an international organization that provides infertility treatment and genetic services to patients. IVF stands for in vitro fertilization, an infertility treatment in which a female egg is fertilized by male sperm outside

In 1984, human genetics and reproduction researcher and physician Joseph D. Schulman founded the Genetics and IVF Institute, an international organization that provides infertility treatment and genetic services to patients. IVF stands for in vitro fertilization, an infertility treatment in which a female egg is fertilized by male sperm outside of the female body. GIVF is headquartered in Fairfax, Virginia, in association with Inova Health System, formerly called the Fairfax Hospital Association, one of the largest regional hospital systems in the United States. GIVF offers multiple infertility and genetic services including IVF, donor egg and donor sperm programs, prenatal genetic diagnostic testing, and sex selection technology. GIVF was one of the first medical facilities in the United States to offer IVF and has innovated other infertility treatments and genetic services.

Created2019-02-19