The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 26
Filtering by

Clear all filters

173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173211-Thumbnail Image.png
Description

Leonard Hayflick in the US during the early 1960s showed that normal populations of embryonic cells divide a finite number of times. He published his results as 'The Limited In Vitro Lifetime of Human Diploid Cell Strains' in 1964. Hayflick performed the experiment with WI-38 fetal lung cells, named after

Leonard Hayflick in the US during the early 1960s showed that normal populations of embryonic cells divide a finite number of times. He published his results as 'The Limited In Vitro Lifetime of Human Diploid Cell Strains' in 1964. Hayflick performed the experiment with WI-38 fetal lung cells, named after the Wistar Institute, in Philadelphia, Pennsylvania, where Hayflick worked. Frank MacFarlane Burnet, later called the limit in capacity for cellular division the Hayflick Limit in 1974. In the experiment, Hayflick refuted Alexis Carrel's hypothesis that cells could be transplanted and multiplied indefinitely from a single parent cell line.

Created2017-02-11
173306-Thumbnail Image.png
Description

Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases

Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases with age in contrast to most cell of most other types. Telomeres are the protective caps at the end of DNA strands that preserve chromosomal integrity and contribute to DNA length and stability. In most cells, telomeres shorten with each cell division due to incomplete replication, though the enzyme telomerase functions in some cell lines that undergo repetitive divisions to replenish any lost length and to prevent degradation. Cells, and therefore organisms, with short telomeres are more susceptible to mutations and genetic diseases. While TL increases in a subset of sperm cells and longer telomeres may prevent early disintegration of DNA, it may also prevent natural mechanisms of apoptosis, or cell death, from occurring in abnormal sperm.

Created2017-02-07
173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08