The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 69
Filtering by

Clear all filters

172995-Thumbnail Image.png
Description

Franklin William Stahl studied DNA replication, bacteriophages, and genetic recombination in the US during the mid-twentieth and early twenty-first centuries. With his colleague Matthew Meselson, Stahl performed an experiment called the Meselson-Stahl experiment, which provided evidence for a process called semi-conservative DNA replication. Semi-conservative replication is a process in which

Franklin William Stahl studied DNA replication, bacteriophages, and genetic recombination in the US during the mid-twentieth and early twenty-first centuries. With his colleague Matthew Meselson, Stahl performed an experiment called the Meselson-Stahl experiment, which provided evidence for a process called semi-conservative DNA replication. Semi-conservative replication is a process in which each strand of a parental DNA double helix serves as a template for newly replicated daughter strands, so that one parental strand is conserved in every daughter double helix. Those findings supported the Watson-Crick Model for DNA replication proposed in 1953 by James Watson and Francis Crick, convincing many biologists about DNA’s structure and replication in the 1950s. Stahl’s genetics research, especially that of DNA replication, showed researchers how genetic information is distributed within a cell and is passed down from cell to cell.

Created2017-07-20
173009-Thumbnail Image.png
Description

William John Little was one of the first orthopedic surgeons to research congenital malformations and their causes in the nineteenth century and presented preliminary research on a condition modernly known as cerebral palsy, a condition of varying severity that affects a person’s ability to move. Little worked throughout the United

William John Little was one of the first orthopedic surgeons to research congenital malformations and their causes in the nineteenth century and presented preliminary research on a condition modernly known as cerebral palsy, a condition of varying severity that affects a person’s ability to move. Little worked throughout the United Kingdom for the majority of the time he practiced medicine, and eventually founded one of the first orthopedic infirmaries, the Royal Orthopedic Hospital in London, England. Throughout his career, Little studied congenital malformations, which are medical conditions inherited before birth, as well as how certain medical circumstances during delivery affect the neonate. In 1861, he described a condition with motor, behavioral, and cognitive irregularities in neonates, linked with oxygen deprivation during birth. Little’s research on that condition, originally called Little’s disease, and modernly, spastic cerebral palsy, was one of the first accounts of cerebral palsy in infants.

Created2021-05-03
172942-Thumbnail Image.png
Description

David Michael Rorvik is a science journalist who publicized advancements in the field of reproductive medicine during the late twentieth century. Rorvik wrote magazine articles and books in which he discussed emerging methods and technologies that contributed to the progression of reproductive health, including sex determination, in vitro fertilization, and

David Michael Rorvik is a science journalist who publicized advancements in the field of reproductive medicine during the late twentieth century. Rorvik wrote magazine articles and books in which he discussed emerging methods and technologies that contributed to the progression of reproductive health, including sex determination, in vitro fertilization, and human cloning. During that time, those topics were controversial and researchers often questioned Rorvik’s work for accuracy. Rorvik contributed to the field of reproductive medicine by communicating methods of reproductive intervention and contributing to the controversy around new developmental medicine technologies.

Created2018-07-05
Description

On 6 May 1952, at King’s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA’s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA.

On 6 May 1952, at King’s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA’s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA. Franklin took Photo 51 after scientists confirmed that DNA contained genes. Maurice Wilkins, Franklin’s colleague showed James and Francis Crick Photo 51 without Franklin’s knowledge. Watson and Crick used that image to develop their structural model of DNA. In 1962, after Franklin’s death, Watson, Crick, and Wilkins shared the Nobel Prize in Physiology or Medicine for their findings about DNA. Franklin’s Photo 51 helped scientists learn more about the three-dimensional structure of DNA and enabled scientists to understand DNA’s role in heredity.

Created2019-12-30
172966-Thumbnail Image.png
Description

Arnaud Fauconnier and Charles Chapron published “Endometriosis and Pelvic Pain: Epidemiological Evidence of the Relationship and Implications,” henceforth “Endometriosis and Pelvic Pain,” in the journal Human Reproduction Update in 2005. In that article, the researchers studied the relationship between pelvic pain and endometriosis. Endometriosis is the growth of endometrium, or

Arnaud Fauconnier and Charles Chapron published “Endometriosis and Pelvic Pain: Epidemiological Evidence of the Relationship and Implications,” henceforth “Endometriosis and Pelvic Pain,” in the journal Human Reproduction Update in 2005. In that article, the researchers studied the relationship between pelvic pain and endometriosis. Endometriosis is the growth of endometrium, or tissue that normally lines the inside of the uterus, outside of the uterus. The authors review medical studies in order to determine how much evidence exists that endometriosis causes chronic pelvic pain symptoms. Then, the authors describe specific relationships between different types of endometriotic lesions and pain symptoms. By establishing specific relationships between pain and endometriosis, “Endometriosis and Pelvic Pain” helped healthcare professionals diagnose and treat pelvic pain related to endometriosis.

Created2019-11-30
172977-Thumbnail Image.png
Description

In May 1953, scientists James Watson and Francis Crick wrote the article “Genetical Implications of the Structure of Deoxyribonucleic Acid,” hereafter “Genetical Implications,” which was published in the journal Nature. In “Genetical Implications,” Watson and Crick suggest a possible explanation for deoxyribonucleic acid, or DNA, replication based on a structure

In May 1953, scientists James Watson and Francis Crick wrote the article “Genetical Implications of the Structure of Deoxyribonucleic Acid,” hereafter “Genetical Implications,” which was published in the journal Nature. In “Genetical Implications,” Watson and Crick suggest a possible explanation for deoxyribonucleic acid, or DNA, replication based on a structure of DNA they proposed prior to writing “Genetical Implications.” Watson and Crick proposed their theory about DNA replication at a time when scientists had recently reached the consensus that DNA contained genes, which scientists understood to carry information that determines an organism’s identity. Watson and Crick’s replication mechanism as presented in “Genetical Implications” contributed to the two scientists sharing a portion of the 1962 Nobel Prize in Physiology or Medicine. With their suggested DNA replication mechanism in “Genetical Implications,” Watson and Crick explained how genes are copied and passed along to new cells and organisms, thereby explaining how the information contained within genes is preserved through generations.

Created2020-01-13
172980-Thumbnail Image.png
Description

In April 1953, Rosalind Franklin and Raymond Gosling, published “Molecular Configuration in Sodium Thymonucleate,” in the scientific journal Nature. The article contained Franklin and Gosling’s analysis of their X-ray diffraction pattern of thymonucleate or deoxyribonucleic acid, known as DNA. In the early 1950s, scientists confirmed that genes, the heritable factors

In April 1953, Rosalind Franklin and Raymond Gosling, published “Molecular Configuration in Sodium Thymonucleate,” in the scientific journal Nature. The article contained Franklin and Gosling’s analysis of their X-ray diffraction pattern of thymonucleate or deoxyribonucleic acid, known as DNA. In the early 1950s, scientists confirmed that genes, the heritable factors that control how organisms develop, contained DNA. However, at the time scientists had not determined how DNA functioned or its three-dimensional structure. In their 1953 paper, Franklin and Gosling interpret X-ray diffraction patterns of DNA fibers that they collected, which show the scattering of X-rays from the fibers. The patterns provided information about the three-dimensional structure of the molecule. “Molecular Configuration in Sodium Thymonucleate” shows the progress Franklin and Gosling made toward understanding the three-dimensional structure of DNA.

Created2019-11-30
172984-Thumbnail Image.png
Description

Screening for Breast Cancer with Mammography is a Cochrane systematic review originally published by Peter Gøtzsche and Karsten Jørgensen in 2001 and updated multiple times by 2013. In the 2013 article, the authors discuss the reliability of the results from different clinical trials involving mammography and provide their conclusions about

Screening for Breast Cancer with Mammography is a Cochrane systematic review originally published by Peter Gøtzsche and Karsten Jørgensen in 2001 and updated multiple times by 2013. In the 2013 article, the authors discuss the reliability of the results from different clinical trials involving mammography and provide their conclusions about whether mammography screening is useful in preventing deaths from breast cancer. Mammography is an X-ray technique used to detect abnormalities in breast tissue, such as breast cancer, which affects about twelve percent of women in the world and has a significant risk of mortality. The authors concluded that mammography screenings reduced breast cancer mortality, but resulted in problems such as overdiagnosis and overtreatment of screened women. The article Screening for Breast Cancer with Mammography contributed to the then ongoing controversy about the usefulness of mammography and provided accessible information about mammograms in seven languages.

Created2017-08-08
172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172903-Thumbnail Image.png
Description

This study aims to provide information to answer the following question: While some scientists claim they can indefinitely culture a stem cell line in vitro, what are the consequences of those culturing practices? An analysis of a cluster of articles from the Embryo Project Encyclopedia provides information to suggest possible

This study aims to provide information to answer the following question: While some scientists claim they can indefinitely culture a stem cell line in vitro, what are the consequences of those culturing practices? An analysis of a cluster of articles from the Embryo Project Encyclopedia provides information to suggest possible solutions to some potential problems in cell culturing, recognition of benefits for existing or historical culturing practices, and identification of gaps in scientific knowledge that warrant further research.

Created2020-12-16