The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 76
Filtering by

Clear all filters

172943-Thumbnail Image.png
Description

In the 1973 case of Roe v. Wade, the US Supreme Court ruled that laws banning abortion violated the US Constitution. The Texas abortion laws, articles 1191–1194, and 1196 of the Texas penal code, made abortion illegal and criminalized those who performed or facilitated the procedure. Prior to Roe v.

In the 1973 case of Roe v. Wade, the US Supreme Court ruled that laws banning abortion violated the US Constitution. The Texas abortion laws, articles 1191–1194, and 1196 of the Texas penal code, made abortion illegal and criminalized those who performed or facilitated the procedure. Prior to Roe v. Wade, most states heavily regulated or banned abortions. The US Supreme Court decision in Roe v. Wade secured women's rights to terminate pregnancies for any reasons within the first trimester of pregnancy. It also sparked legal discussions of abortion, fetus viability and personhood, and the trimester framework, setting a landmark precedent for future cases including Webster v. Reproductive Health Services (1989), Planned Parenthood v. Casey (1992), and Stenberg v. Carhart (2000).

Created2018-07-03
172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
172903-Thumbnail Image.png
Description

This study aims to provide information to answer the following question: While some scientists claim they can indefinitely culture a stem cell line in vitro, what are the consequences of those culturing practices? An analysis of a cluster of articles from the Embryo Project Encyclopedia provides information to suggest possible

This study aims to provide information to answer the following question: While some scientists claim they can indefinitely culture a stem cell line in vitro, what are the consequences of those culturing practices? An analysis of a cluster of articles from the Embryo Project Encyclopedia provides information to suggest possible solutions to some potential problems in cell culturing, recognition of benefits for existing or historical culturing practices, and identification of gaps in scientific knowledge that warrant further research.

Created2020-12-16
172911-Thumbnail Image.png
Description

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their

Carol Widney Greider studied telomeres and telomerase in the US at the turn of the twenty-first century. She worked primarily at the University of California, Berkeley in Berkeley, California.
She received the Nobel Prize in Physiology or Medicine in 2009, along with Elizabeth Blackburn and Jack Szostak, for their research on telomeres and telomerase. Telomeres are repetitive sequences of
DNA at the ends of chromosomes that protect chromosomes from tangling, and they provide some protection from mutations. Greider also studied telomerase, an enzyme that repairs telomeres. Without telomeres, chromosomes are subject to mutations that can lead to
cell death, and without telomerase, cells might not reproduce fast enough during embryonic development. Greider's research on telomeres helped scientists explain how chromosomes function within cells.

ContributorsBartlett, Zane (Author) / Wagoner, Nevada (Editor)
Created2015-01-26
172923-Thumbnail Image.png
Description

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling. In 1989, Gregg Morin found that telomerase was present in human cells. In 1996, Woodring Wright and his team examined human embryonic cells and found that telomerase was active in them. Scientists manipulate telomerase in cells to give cells the capacity to replicate infinitely. Telomerase is also necessary for stem cells to replicate themselves and to develop into more specialized cells in embryos and fetuses.

Created2015-03-23
173211-Thumbnail Image.png
Description

Leonard Hayflick in the US during the early 1960s showed that normal populations of embryonic cells divide a finite number of times. He published his results as 'The Limited In Vitro Lifetime of Human Diploid Cell Strains' in 1964. Hayflick performed the experiment with WI-38 fetal lung cells, named after

Leonard Hayflick in the US during the early 1960s showed that normal populations of embryonic cells divide a finite number of times. He published his results as 'The Limited In Vitro Lifetime of Human Diploid Cell Strains' in 1964. Hayflick performed the experiment with WI-38 fetal lung cells, named after the Wistar Institute, in Philadelphia, Pennsylvania, where Hayflick worked. Frank MacFarlane Burnet, later called the limit in capacity for cellular division the Hayflick Limit in 1974. In the experiment, Hayflick refuted Alexis Carrel's hypothesis that cells could be transplanted and multiplied indefinitely from a single parent cell line.

Created2017-02-11
173230-Thumbnail Image.png
Description

In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already

In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types. Gurdon's experiment disproved the theory that differentiated cells could not be undifferentiated or dedifferentiated into a new type of differentiated cell. Gurdon's experiment demonstrated nuclear transplantation, also called cloning, using differentiated cells.

Created2017-03-16
173237-Thumbnail Image.png
Description

Hydrocephalus is a congenital or acquired disorder characterized by the abnormal accumulation of cerebrospinal fluid within the cavities of the brain, called ventricles. The accumulation of cerebrospinal fluid, the clear fluid surrounding the brain and spinal cord, causes an abnormal widening of the ventricles. The widening creates potentially harmful pressure

Hydrocephalus is a congenital or acquired disorder characterized by the abnormal accumulation of cerebrospinal fluid within the cavities of the brain, called ventricles. The accumulation of cerebrospinal fluid, the clear fluid surrounding the brain and spinal cord, causes an abnormal widening of the ventricles. The widening creates potentially harmful pressure on the tissues of the brain that can result in brain damage or death. The most obvious sign of hydrocephalus is the rapid increase in head circumference or an unusual large head size due to the accumulation of cerebrospinal fluid in the brain. In infants, hydrocephalus can be caused by congenital factors such as malformations of the brain, or acquired factors such as tumors, cysts, meningitis, or bleeding. Treatment after the infant is born can lead to normal cognitive and physical development with few limitations.

Created2017-03-07
Description

Hermann Joseph Muller conducted three experiments in 1926 and 1927 that demonstrated that exposure to x-rays, a form of high-energy radiation, can cause genetic mutations, changes to an organism's genome, particularly in egg and sperm cells. In his experiments, Muller exposed fruit flies (Drosophila) to x-rays, mated the flies, and

Hermann Joseph Muller conducted three experiments in 1926 and 1927 that demonstrated that exposure to x-rays, a form of high-energy radiation, can cause genetic mutations, changes to an organism's genome, particularly in egg and sperm cells. In his experiments, Muller exposed fruit flies (Drosophila) to x-rays, mated the flies, and observed the number of mutations in the offspring. In 1927, Muller described the results of his experiments in "Artificial Transmutation of the Gene" and "The Problem of Genic Modification". His discovery indicated the causes of mutation and for that research he later received the Nobel Prize in Physiology or Medicine in 1946. Muller's experiments with x-rays established that x-rays mutated genes and that egg and sperm cells are especially susceptible to such genetic mutations.

Created2017-03-07
173242-Thumbnail Image.png
Description

Ignacio Vives Ponseti developed a noninvasive method for treating congenital club foot in the US during the late 1940s. Congenital club foot is a birth deformity in which one or both of an infant's feet are rotated inward beneath the ankle, making normal movement rigid and painful. Ponseti developed a

Ignacio Vives Ponseti developed a noninvasive method for treating congenital club foot in the US during the late 1940s. Congenital club foot is a birth deformity in which one or both of an infant's feet are rotated inward beneath the ankle, making normal movement rigid and painful. Ponseti developed a treatment method, later called the Ponseti method, that consisted of a series of manipulations and castings of the club foot performed in the first few months of life. The Ponseti method provided a non-surgical treatment that generally resulted in better long-term outcomes than the surgical procedures that doctors used prior to his work. Ponseti's method for treating congenital club foot improved the quality of life for patients born with the deformity, and his work led researchers to study fetal foot tissues.

Created2017-03-09