The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 35
Filtering by

Clear all filters

175295-Thumbnail Image.jpg
Description

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In

Mechanism of Notch Signaling: The image depicts a type of cell signaling, in which two animal cells interact and transmit a molecular signal from one to the other. The process results in the production of proteins, which influence the cells as they differentiate, move, and contribute to embryological development. In the membrane of the signaling cell, there is a ligand (represented by a green oval). The ligand functions to activate a change in a receptor molecule. In the receiving cell, there are receptors; in this case, Notch proteins (represented by orange forks). The Notch proteins are embedded in the receiving cell membrane, and they have at least two parts: an intracellular domain (inside the cell) and the receptor (outside the cell). Once the ligand and receptor bind to each other, a protease (represented by the dark red triangle) can sever the intracellular domain from the rest of the Notch receptor. Inside the nucleus of the receiving cell (represented by the gray area) are the cellês DNA (represented by the multi-colored helices) and its transcription factors (blue rectangles). Transcription factors are proteins that bind to DNA to regulate transcription, the first step in gene expression, which eventually yields proteins or other products. Initially, repressor proteins (represented by a red irregular hexagon) prevent transcription factors from allowing transcription. When the severed Notch receptor intracellular domain reaches the nucleus, it displaces the repressor. The transcription factor can then signal for transcription to occur. 1) There is a Notch receptor protein in the membrane of a receiving cell, and a ligand for this receptor (for example, Delta) in the membrane of the signaling cell. When the ligand binds to the receptor, the intracellular domain of the receptor changes shape. 2) Inside the receiving cell, there are proteases. Once the intracellular domain of the receptor changes shape, the protease can bind to it and shear the intracellular domain away from the rest of the receptor molecule. 3) The severed intracellular domain is shuttled to the receiving cell nucleus. Here, the intracellular domain displaces a repressor protein. This allows a transcription factor to initiate DNA transcription. During transcription, DNA is used as a template to create RNA. Following transcription, the process of translation occurs, which uses RNA as a template to create proteins. These proteins influence the behavior, fate, and differentiation of cells, which contribute to normal embryonic development

Created2014-08-21
173938-Thumbnail Image.png
Description

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived from vitamin A, or retinoic acid. Doctors prescribe isotretinoin to treat severe acne. For pregnant women, too much vitamin A or isotretinoin can also cause greater than normal rates of stillbirths and fetal disintegrations after the ninth week of gestation. Women who use isotretinoin during the first trimester of their pregnancies, even in small amounts, risk defects to their fetuses such as external ear malformations, cleft palates, undersized jaws (micrognathia), a variety of heart defects, buildups of fluids inside the skulls that leads to brain swelling (hydrocephalus), small heads and brains (microcephaly), and mental retardation.

Created2014-07-20
173262-Thumbnail Image.png
Description

In Maureen Kass v. Steven Kass (1998), the Court of Appeals of New York in Albany, New York, ruled that the state should generally consider IVF consent forms signed by participants in an in vitro fertilization (IVF) program valid, binding, and enforceable in the event of a dispute. The

In Maureen Kass v. Steven Kass (1998), the Court of Appeals of New York in Albany, New York, ruled that the state should generally consider IVF consent forms signed by participants in an in vitro fertilization (IVF) program valid, binding, and enforceable in the event of a dispute. The court indicated that decisions regarding the handling of cryopreserved pre-zygotes, often called preembryos, contained within these consent forms should be upheld. Although Steven and Maureen Kass had signed IVF consent forms agreeing to donate unused preembryos to research, during their divorce Maureen argued for custody of the preembryos. The New York Court of Appeals ruled in favor of Steven Kass and concluded that the informed consent forms signed by the former couple had clearly manifested the coupleÕs mutual intent to donate any preembryos to research in the event of a dispute.

Created2013-11-01
172716-Thumbnail Image.png
Description

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.

Created2013-09-17
172743-Thumbnail Image.png
Description

Georges Cuvier, baptized Georges Jean-Leopold Nicolas-Frederic Cuvier, was a professor of anatomy at the National Museum of Natural History in Paris, France, through the late eighteenth and early nineteenth centuries. Scholars recognize Cuvier as a founder of modern comparative anatomy, and as an important contributor to vertebrate paleontology and geology.

Georges Cuvier, baptized Georges Jean-Leopold Nicolas-Frederic Cuvier, was a professor of anatomy at the National Museum of Natural History in Paris, France, through the late eighteenth and early nineteenth centuries. Scholars recognize Cuvier as a founder of modern comparative anatomy, and as an important contributor to vertebrate paleontology and geology. Cuvier studied the form and function of animal anatomy, writing four volumes on quadruped fossils and co-writing eleven volumes on the natural history of fish with Achille Valenciennes. Moreover, Cuvier constructed a system of classification based on specific and well-articulated principles to help anatomists classify animal taxa. Cuvier had public debate in 1830 with Etienne Geoffroy Saint-Hilaire, a dispute centered on whether form or function matters most for the study of anatomy and whether the transmutation of organic forms can occur over time. Cuvier's opinions influenced the development of biology in France, and his arguments against transmutation of types influenced the reception of Charles Darwin's theory of evolution by natural selection among many French naturalists.

Created2013-07-10
172747-Thumbnail Image.png
Description

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he

'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.

Created2012-05-06
172749-Thumbnail Image.png
Description

In A.Z. v. B.Z. (2000), the Supreme Judicial Court of Massachusetts in Boston, Massachusetts, affirmed a lower courtÕs decision, ruling that contracts that require a party to become a parent against his or her will are unenforceable and contrary to public policy. The case centered around A.Z. and B.Z., a

In A.Z. v. B.Z. (2000), the Supreme Judicial Court of Massachusetts in Boston, Massachusetts, affirmed a lower courtÕs decision, ruling that contracts that require a party to become a parent against his or her will are unenforceable and contrary to public policy. The case centered around A.Z. and B.Z., a divorced couple who had previously used in vitro fertilization (IVF) to start a family together during their marriage and had several preembryos cryopreserved as part of the process. While undertaking IVF, the couple signed multiple consent forms requiring them to decide what should happen to the cryopreserved preembryos in the event of certain listed contingencies, such as death or separation of the couple. The couple indicated their preference that B.Z., A.Z.Õs now former wife, could use the cryopreserved preembryos if the couple later separated. When their relationship deteriorated, however, A.Z. objected to B.Z.Õs attempt to have additional children using the preembryos, leading to a lengthy legal battle. The court case A.Z. v. B.Z. established Massachusetts public policy that people should not be forced to become a parent against their will, even if they previously agreed to provide their genetic material for reproduction.

Created2013-11-01
172752-Thumbnail Image.png
Description

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to

Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms. Moreover, Geoffroy emphasized the concept of l'unite de composition (the unity of plan). Geoffroy disputed in 1830 with Georges Cuvier over whether form or function matters most for the study of anatomy and whether the transformation of organic forms can occur over time. Geoffroy's conceptual contributions, as well as his experimental research, influenced embryological research on animal morphology and teratogens, and later the field of evolutionary paleontology.

Created2013-08-05
172754-Thumbnail Image.png
Description

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell

Edmund Beecher Wilson contributed to cell biology, the study of cells, in the US during the end of the nineteenth and the beginning of the twentieth centuries. His three editions of The Cell in Development and Inheritance (or Heredity) in 1896, 1900, and 1925 introduced generations of students to cell biology. In The Cell, Wilson described the evidence and theories of his time about cells and identified topics for future study. He helped show how each part of the cell works during cell division and in every step of early development of an organism. Developmental biologists trained in the mid-twentieth century reported WilsonÕs text as their foundation for understanding biology, including about how cells, development, heredity, and evolution interact. Wilson considered cells as the center of all biological phenomena.

Created2013-08-05
172772-Thumbnail Image.png
Description

The Human Genome Project (HGP) was an international scientific effort to sequence the entire human genome, that is, to produce a map of the base pairs of DNA in the human chromosomes, most of which do not vary among individuals. The HGP started in the US in 1990 as a

The Human Genome Project (HGP) was an international scientific effort to sequence the entire human genome, that is, to produce a map of the base pairs of DNA in the human chromosomes, most of which do not vary among individuals. The HGP started in the US in 1990 as a public effort and included scientists and laboratories located in France, Germany, Japan, China, and the United Kingdom. Scientists hypothesized that mapping and sequencing the human genome would facilitate better theories of human development, the genetic causes and predispositions for a number of diseases, and individualized medicine. The HGP, alongside the private effort taken up by the company Celera Genomics, released a working draft of the human genome in 2001 and a complete sequence in 2003. The history of the HGP ripples beyond biomedical science and technology into the social, economic, and political.

Created2014-05-06