The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 23
Filtering by

Clear all filters

173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173901-Thumbnail Image.png
Description

The case of Smith v. Cote (1986) answered two important questions concerning law and childbirth: does the State of New Hampshire recognize a cause of action for what is defined as wrongful birth, and does the State recognize a cause of action for what is classified as wrongful life? In

The case of Smith v. Cote (1986) answered two important questions concerning law and childbirth: does the State of New Hampshire recognize a cause of action for what is defined as wrongful birth, and does the State recognize a cause of action for what is classified as wrongful life? In the case of Smith v. Cote, damages were permitted for wrongful birth, but not for the action of wrongful life.

Created2011-03-24
173286-Thumbnail Image.png
Description

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same! Unfortunately, our regenerative capacities are limited to hair, nails, and skin, while the liver and a few other tissues display more restricted regenerative abilities. What if we could grow back lost limbs, or damaged organs? This question has inspired many stories, dating back to Greek mythology, wherein Prometheus was doomed to regenerate his liver after it had been devoured by birds. Regeneration has permeated many imaginations; it has appeared in many literary and religious texts, and has also provoked much interest from the scientific community.

Created2009-06-10
173192-Thumbnail Image.png
Description

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch.

Although educated as a scientist who studied with both August Weismann and Ernst Heinrich Haeckel, Hans Adolf Eduard Driesch was first employed as a professor of philosophy and became a strong proponent of vitalism. Driesch was born on 28 October 1867, the only child of Josefine Raudenkolb and Paul Driesch. He grew up in a wealthy merchant family in Hamburg, Germany, where he was educated at the humanistic Gymnasium Gelehrtenschule des Johanneums that had been founded by a friend of Martin Luther. In 1886 he spent two summers studying with Weismann at the University of Freiburg and then entered the University of Jena, where he received his doctorate in 1889 with a study of hydroid colonies. By 1890 Driesch had lost interest in Haeckel's popular phylogenetic approach to zoology and instead focused on experimental embryology.

Created2007-11-01
173195-Thumbnail Image.png
Description

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen,

This video is composed of a sequence of films created by John Tyler Bonner in the 1940s to show the life cycle of the cellular slime mold Dictyostelium discoideum. As only the second person to study slime molds, Bonner frequently encountered audiences who had never heard of, let alone seen, the unusual organism. He therefore decided to create a film to present at seminars in order to introduce his object of study; the time-lapsed film captivated audiences, indeed Bonner has described that the film "always stole the show." Bonner began working in the biology department at Princeton University in 1947, and although Princeton appears in the opening title, Bonner actually made the film for his senior thesis as an undergraduate at Harvard University with some early assistance from Frank Smith, a photographer. Although unsure of name of the device that was used for filming, he has described it as "the most amazing antique contraption that belonged to my professor, Wm. H. Weston. It consisted of a gigantic and VERY heavy set of brass gears that had numerous possible speeds that turned a crank on the side of an old 16 mm box camera that pointed into the ocular of a microscope. The electric motor that propelled it made such vibrations that the whole apparatus had to be on a separate table and not touching the microscope."

Created2008-05-02
173522-Thumbnail Image.png
Description

The Case against Perfection: Ethics in the Age of Genetic Engineering, hereafter referred to as The Case against Perfection, written by Michael J. Sandel, builds on a short essay featured in The Atlantic Monthly magazine in 2004. Three years later, Sandel transformed his article into a book, keeping the same

The Case against Perfection: Ethics in the Age of Genetic Engineering, hereafter referred to as The Case against Perfection, written by Michael J. Sandel, builds on a short essay featured in The Atlantic Monthly magazine in 2004. Three years later, Sandel transformed his article into a book, keeping the same title but expanding upon his personal critique of genetic engineering. The purpose of Sandel's book is to articulate the sources of what he considers to be widespread public unease related to genetic engineering that changes the course of natural development.

Created2011-04-18
173679-Thumbnail Image.png
Description

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia. Child observed that regeneration occurred in a graded process along the axis of the organism, with the characteristics of each physiological process seemingly determined by its location along the axis. To explain these observations, Child posited the existence of physiological factors working to guide the regenerative process. He was convinced that these differences along the gradients could be explained quantitatively.

Created2009-08-01
Description

Rh incompatibility occurs when a pregnant woman whose blood type is Rh-negative is exposed to Rh-positive blood from her fetus, leading to the mother s development of Rh antibodies. These antibodies have the potential to cross the placenta and attach to fetal red blood cells, resulting in hemolysis, or destruction

Rh incompatibility occurs when a pregnant woman whose blood type is Rh-negative is exposed to Rh-positive blood from her fetus, leading to the mother s development of Rh antibodies. These antibodies have the potential to cross the placenta and attach to fetal red blood cells, resulting in hemolysis, or destruction of the fetus 's red blood cells. This causes the fetus to become anemic, which can lead to hemolytic disease of the newborn. In severe cases, an intrauterine blood transfusion for the fetus may be required to correct the anemia.

Created2011-04-08
172879-Thumbnail Image.png
Description

Born in Ypsilanti, Michigan, on 2 February 1869, Charles Manning Child was the only surviving child of Mary Elizabeth and Charles Chauncey Child, a prosperous, old New England family. Growing up in Higganum, Connecticut, Child was interested in biology from an early age. He made extensive collections of plants and

Born in Ypsilanti, Michigan, on 2 February 1869, Charles Manning Child was the only surviving child of Mary Elizabeth and Charles Chauncey Child, a prosperous, old New England family. Growing up in Higganum, Connecticut, Child was interested in biology from an early age. He made extensive collections of plants and minerals on his family farm and went on to study biology at Wesleyan University, commuting from his family home. Child received his PhB in 1890 and MS in biology in 1892, and then went on to study in Leipzig after his parents death. He worked for a short time in the psychology laboratory of Wilhelm Wundt, and then pursued studies in zoology under the supervision of Rudolf Leuckhart. His doctoral dissertation investigated morphological aspects of insect sense organs. Leuckhart emphasized the functional purpose of morphological structures and led many of his students to develop and defend the notion of teleology, including Child, who completed his PhD in 1894.

Created2007-10-23
173516-Thumbnail Image.png
Description

Alejandro Sánchez Alvarado's laboratory group has employed molecular tools to investigate old questions about regeneration and as a result have identified some of the molecular mechanisms determining polarity. Recent work by his group has shown Wnt-β-catenin signaling determines whether a tail or a head will form during regeneration in

Alejandro Sánchez Alvarado's laboratory group has employed molecular tools to investigate old questions about regeneration and as a result have identified some of the molecular mechanisms determining polarity. Recent work by his group has shown Wnt-β-catenin signaling determines whether a tail or a head will form during regeneration in planarians. This study was motivated by work Thomas Hunt Morgan conducted in the late nineteenth century. Morgan observed that during regeneration a planarian cut into rather small pieces would sometimes regenerate a head at both its anterior and posterior end rather than a head and a tail. This led Morgan to think the size of the piece must affect the regenerative process.

Created2010-03-15