The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 36
Filtering by

Clear all filters

175301-Thumbnail Image.jpg
Description

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The to

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process. In this figure, each box represents the borders of the cell, and the dashed lines inside the box represent the nucleus. In the normal cell depiction, three genes (represented as colored rectangles) in the nucleus influence the production of three corresponding enzymes (represented as colored squares). The collections of black circles, orange triangles, green squares, and purple circles represent organic molecules, which the enzymes affect through metabolic reactions. In the normal box, gene 3 somehow produces enzyme 3, which catalyzes a reaction in which the first two molecules combine to form a larger molecule. Enzyme 2 catalyzes the second step in the reaction in which the enzyme modifies the chemical composition of the molecule. Enzyme 3 catalyzes the third step in the reaction in which a carbon atom is added to the molecule. This figure also represents an abnormal process (bottommost box) of enzyme production and biochemical reactions. In the abnormal process, X-rays damaged gene 2, preventing the production of enzyme 2. As a result, neither the second nor the third steps of the chemical reaction can occur.

Created2016-10-12
173431-Thumbnail Image.png
Description

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes. Beadle and Ephrussi were the first to apply the transplantation method, which had previously been used in the study of larger insects, to the smaller sized Drosophila. Beadle and Ephrussi used this method of transplantation to determine if parts of the optic disc, the section of a larvae that later become the eye buds in the adult, could be extracted from one larva and transplanted into another. They later built upon this research to relate the production of molecules in cells to gene function.

Created2014-06-29
Description

In April 1953, James Watson and Francis Crick published “Molecular Structure of Nucleic Acids: A Structure of Deoxyribose Nucleic Acid” or “A Structure for Deoxyribose Nucleic Acid,” in the journal Nature. In the article, Watson and Crick propose a novel structure for deoxyribonucleic acid or DNA. In 1944, Oswald T.

In April 1953, James Watson and Francis Crick published “Molecular Structure of Nucleic Acids: A Structure of Deoxyribose Nucleic Acid” or “A Structure for Deoxyribose Nucleic Acid,” in the journal Nature. In the article, Watson and Crick propose a novel structure for deoxyribonucleic acid or DNA. In 1944, Oswald T. Avery and his group at Rockefeller University in New York City, New York published experimental evidence that DNA contained genes, the biological factors called genes that dictate how organisms grow and develop. Scientists did not know how DNA’s function led to the passage of genetic information from cell to cell, or organism to organism. The model that Watson and Crick presented connected the concept of genes to heredity, growth, and development. As of 2018, most scientists accept Watson and Crick’s model of DNA presented in the article. For their work on DNA, Watson and Crick shared the 1962 Nobel Prize in Physiology or Medicine with Maurice Wilkins.

Created2019-10-31
173251-Thumbnail Image.png
Description

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration. The investigation helped scientists explain how regeneration is initiated and describe the overall regenerative mechanism of whole organisms.

Created2017-05-09
173262-Thumbnail Image.png
Description

In Maureen Kass v. Steven Kass (1998), the Court of Appeals of New York in Albany, New York, ruled that the state should generally consider IVF consent forms signed by participants in an in vitro fertilization (IVF) program valid, binding, and enforceable in the event of a dispute. The

In Maureen Kass v. Steven Kass (1998), the Court of Appeals of New York in Albany, New York, ruled that the state should generally consider IVF consent forms signed by participants in an in vitro fertilization (IVF) program valid, binding, and enforceable in the event of a dispute. The court indicated that decisions regarding the handling of cryopreserved pre-zygotes, often called preembryos, contained within these consent forms should be upheld. Although Steven and Maureen Kass had signed IVF consent forms agreeing to donate unused preembryos to research, during their divorce Maureen argued for custody of the preembryos. The New York Court of Appeals ruled in favor of Steven Kass and concluded that the informed consent forms signed by the former couple had clearly manifested the coupleÕs mutual intent to donate any preembryos to research in the event of a dispute.

Created2013-11-01
173342-Thumbnail Image.png
Description

In 1956, Gunther Stent, a scientist at the University of California Berkeley in Berkeley, California, coined the terms conservative, semi-conservative, and dispersive to categorize the prevailing theories about how DNA replicated. Stent presented a paper with Max Delbrück titled “On the Mechanism of DNA Replication” at the McCollum-Pratt Symposium at

In 1956, Gunther Stent, a scientist at the University of California Berkeley in Berkeley, California, coined the terms conservative, semi-conservative, and dispersive to categorize the prevailing theories about how DNA replicated. Stent presented a paper with Max Delbrück titled “On the Mechanism of DNA Replication” at the McCollum-Pratt Symposium at Johns Hopkins University in Baltimore, Maryland. In response to James Watson and Francis Crick’s proposed structure of DNA in 1953, scientists debated how DNA replicated. Throughout the debate, scientists hypothesized different theories about how DNA replicated, but none of the theories had sound experimental data. Stent introduced DNA replication classes that, if present in DNA, would yield distinct experimental results. Conservative, semi-conservative, and dispersive DNA replication categories shaped scientists' research into how DNA replicated, which led to the conclusion that DNA replicated semi-conservatively.

Created2019-10-31
172716-Thumbnail Image.png
Description

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.

Created2013-09-17
173202-Thumbnail Image.png
Description

The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.

Created2016-06-27
173036-Thumbnail Image.png
Description

George McDonald Church studied DNA from living and from extinct species in the US during the twentieth and twenty-first centuries. Church helped to develop and refine techniques with which to describe the complete sequence of all the DNA nucleotides in an organism's genome, techniques such as multiplex sequencing, polony sequencing,

George McDonald Church studied DNA from living and from extinct species in the US during the twentieth and twenty-first centuries. Church helped to develop and refine techniques with which to describe the complete sequence of all the DNA nucleotides in an organism's genome, techniques such as multiplex sequencing, polony sequencing, and nanopore sequencing. Church also contributed to the Human Genome Project, and in 2005 he helped start a company, the Personal Genome Project. Church proposed to use DNA from extinct species to clone and breed new organisms from those species.

Created2015-08-12
173041-Thumbnail Image.png
Description

The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion,

The objective of this project was to determine the importance of informed consent laws to achieving the larger goal of dismantling the right to abortion. I found that informed consent counseling materials in most states contain a full timeline of fetal development, along with information about the risks of abortion, the risks of childbirth, and alternatives to abortion. In addition, informed consent laws for abortion are based on model legislation called the “Women’s Right to Know Act” developed by Americans United for Life (AUL). AUL calls itself the legal architect of the pro-life movement and works to pass laws at the state level that incrementally restrict abortion access so that it gradually becomes more difficult to exercise the right to abortion established by Roe v. Wade.

Created2021-03-11