The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

175301-Thumbnail Image.jpg
Description

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The to

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process. In this figure, each box represents the borders of the cell, and the dashed lines inside the box represent the nucleus. In the normal cell depiction, three genes (represented as colored rectangles) in the nucleus influence the production of three corresponding enzymes (represented as colored squares). The collections of black circles, orange triangles, green squares, and purple circles represent organic molecules, which the enzymes affect through metabolic reactions. In the normal box, gene 3 somehow produces enzyme 3, which catalyzes a reaction in which the first two molecules combine to form a larger molecule. Enzyme 2 catalyzes the second step in the reaction in which the enzyme modifies the chemical composition of the molecule. Enzyme 3 catalyzes the third step in the reaction in which a carbon atom is added to the molecule. This figure also represents an abnormal process (bottommost box) of enzyme production and biochemical reactions. In the abnormal process, X-rays damaged gene 2, preventing the production of enzyme 2. As a result, neither the second nor the third steps of the chemical reaction can occur.

Created2016-10-12
175310-Thumbnail Image.jpg
Description

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage.

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Created2014-08-21
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173940-Thumbnail Image.png
Description

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in

The Cell-Theory was written by Thomas Henry Huxley in Britain and published in 1853 by The British and Foreign Medico-Chirurgical Review. The twenty-two page article reviews twelve works on cell theory, including those in Germany by Caspar Friedrich Wolff in the eighteenth century and by Karl Ernst von Baer in the nineteenth century. Huxley spends much of The Cell-Theory on a cell theory proposed in the late 1830s by Matthias Schleiden and Theodor Schwann in Germany. Schleiden and Schwann maintained that the cell was the most fundamental unit of life and that the nucleus was the most significant cellular component. Huxley, instead, promoted an epigenetic theory of the cell, for which properties of life emerge from the outer cytoplasm, cell membrane, and wall (the periplast), as opposed to the inner contents of the cell, including the nucleus (the endoplast). Huxley's arguments in The Cell-Theory influenced future scientists about the role of epigenetic processes in embryology and development.

Created2013-12-12
173907-Thumbnail Image.png
Description

Rudolf Carl Virchow lived in nineteenth century Prussia, now Germany, and proposed that omnis cellula e cellula, which translates to each cell comes from another cell, and which became and fundamental concept for cell theory. He helped found two fields, cellular pathology and comparative pathology, and he contributed to many

Rudolf Carl Virchow lived in nineteenth century Prussia, now Germany, and proposed that omnis cellula e cellula, which translates to each cell comes from another cell, and which became and fundamental concept for cell theory. He helped found two fields, cellular pathology and comparative pathology, and he contributed to many others. Ultimately Virchow argued that disease is caused by changes in normal cells, also known as cellular pathology.

Created2012-03-17
173395-Thumbnail Image.png
Description

Matthias Jacob Schleiden helped develop the cell theory in Germany during the nineteenth century. Schleiden studied cells as the common element among all plants and animals. Schleiden contributed to the field of embryology through his introduction of the Zeiss microscope lens and via his work with cells and cell theory

Matthias Jacob Schleiden helped develop the cell theory in Germany during the nineteenth century. Schleiden studied cells as the common element among all plants and animals. Schleiden contributed to the field of embryology through his introduction of the Zeiss microscope lens and via his work with cells and cell theory as an organizing principle of biology.

Created2017-05-29
173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08
173088-Thumbnail Image.png
Description

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm. Diploblastic organisms have only the two primary germ layers; these organisms characteristically have multiple symmetrical body axes (radial symmetry), as is true of jellyfish, sea anemones, and the rest of the phylum Cnidaria. All other animals are triploblastic, as endoderm and ectoderm interact to produce a third germ layer, called mesoderm. Together, the three germ layers will give rise to every organ in the body, from skin and hair to the digestive tract.

Created2013-09-17
Description

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms. Around two billion years ago, mitochondria took up residence inside larger cells, in a process called endosymbiosis, becoming functional parts of those cells. Within each mitochondrion is the mitochondrial DNA (mtDNA), which is different from the DNA in the cell's nucleus (nDNA). Organisms inherit their mitochondria only from their mothers via egg cells (oocytes). Mitochondria contribute to the development of oocytes, the release of the oocyte from the ovary (ovulation), the union of oocyte and sperm (fertilization), all stages of embryo formation (embryogenesis), and growth of the embryo after fertilization.

Created2014-07-05