The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

173012-Thumbnail Image.png
Description

Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to

Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to understand how differentiated structures become specified. Their work overturned a widely accepted model that epithelium controls the identity of the structure, a phenomenon called structural specificity. Interactions between epithelium and mesenchyme control the development and differentiation of many parts during embryonic development, including structures like the gastrointestinal tract and hair. Thus, the realization that mesenchyme drives induction and differentiation during epithelio-mesenchymal interactions had far-reaching effects.

Created2013-03-15
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173763-Thumbnail Image.png
Description

In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed

In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed treefrogs to alter their hatch timing had been documented, the specific cues that induce early hatching were not well understood. Warkentin's study demonstrated that, based on vibration signals alone, treefrog embryos can determine whether they are under attack from a predator and respond accordingly.

Created2012-04-07
173706-Thumbnail Image.png
Description

Johann Friedrich Meckel studied abnormal animal and human anatomy in nineteenth century Germany in an attempt to explain embryological development. During Meckel's lifetime he catalogued embryonic malformations in multiple treatises. Meckel's focus on malformations led him to develop concepts like primary and secondary malformations, atavism, and recapitulation- all of

Johann Friedrich Meckel studied abnormal animal and human anatomy in nineteenth century Germany in an attempt to explain embryological development. During Meckel's lifetime he catalogued embryonic malformations in multiple treatises. Meckel's focus on malformations led him to develop concepts like primary and secondary malformations, atavism, and recapitulation- all of which influenced the fields of medicine and embryology during the nineteenth and twentieth centuries.

Created2013-10-11
172746-Thumbnail Image.png
Description

Johann Friedrich Meckel and Antoine Etienne Reynaud Augustin Serres developed in the early 1800s the basic principles of what later became called the Meckel-Serres Law. Meckel and Serres both argued that fetal deformities result when development prematurely stops, and they argued that these arrests characterized lower life forms, through which

Johann Friedrich Meckel and Antoine Etienne Reynaud Augustin Serres developed in the early 1800s the basic principles of what later became called the Meckel-Serres Law. Meckel and Serres both argued that fetal deformities result when development prematurely stops, and they argued that these arrests characterized lower life forms, through which higher order organisms progress during normal development. The concept that the embryos of higher order organisms progress through successive stages in which they resemble lower level forms is called recapitulation. Meckel, a professor of anatomy at the University of Halle in Halle, Germany, and Serres, a physician at Hotel-Dieu de Paris in Paris, France, did not work together. Rather, in the late nineteenth and early twentieth centuries, their similar approaches, in which they compared the anatomy and embryos of different species so as to relate stages of embryonic development to the scala naturae, led oher scientists to generalize their individual concepts into one general theory. The recapitulation ideas of Meckel and Serres became part of the mid-eighteenth century debate about how to explain morphological similarities between species.

Created2013-07-10