The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 64
Filtering by

Clear all filters

175247-Thumbnail Image.jpg
Description

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring. Compared to the molecular structure of estriol, the molecular structure of estradiol is missing one oxygen-hydrogen or OH group, and estrone lacks the OH group, and one hydrogen molecule that results in a double bonded oxygen atom. These steroid hormones bind to specific cell receptor molecules and induce transcriptional changes in cells. The production of estriol increases during pregnancy, estradiol production increases during stages of the menstrual cycle, and estrone levels increase during menopause. The differing bonds and chemical arrangements enable scientists to determine the different concentrations of the molecules.

Created2017-05-18
173932-Thumbnail Image.png
Description

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced. Non-genetic sex determination occurs when the sex of an organism can be altered during a sensitive period of development due to external factors such as temperature, humidity, or social interactions. Temperature-dependent sex determination (TSD), where the temperature of the embryo's environment influences its sex development, is a widespread non-genetic process of sex determination among vertebrates, including reptiles. All crocodilians, most turtles, many fish, and some lizards exhibit TSD.

Created2013-02-01
173885-Thumbnail Image.png
Description

Human pluripotent stem cells are valued for their potential to form numerous specialized cells and for their longevity. In the US, where a portion of the population is opposed to destruction of human embryos to obtain stem cells, what avenues are open to scientists for obtaining pluripotent cells that do

Human pluripotent stem cells are valued for their potential to form numerous specialized cells and for their longevity. In the US, where a portion of the population is opposed to destruction of human embryos to obtain stem cells, what avenues are open to scientists for obtaining pluripotent cells that do not offend the moral sensibilities of a significant number of citizens? It is this question that the official position paper, or white paper, "Alternative Sources of Human Pluripotent Stem Cells," published in May 2005 by the President's Council on Bioethics under the chairmanship of Leon Kass, seeks to answer. Three experts external to the council, Andrew Fire from the Stanford University School of Medicine, Markus Grompe of the Oregon Health and Science University, and Janet Rossant from the Samuel Lunenfeld Research Institute in Toronto, also reviewed the white paper prior to publication.

Created2011-02-22
173386-Thumbnail Image.png
Description

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers initially called those cells Evans-Kaufman cells. In 1992, Kaufman published The Atlas of Mouse Development, a book that included photographs of mice development and mice organs over time. Kaufman also wrote books about UK medical history, phrenology, or the study of craniums as an indicator of character or mental ability, and medical teaching in the eighteenth and nineteenth centuries. Kaufman’s anatomical records and experiments in mouse development contributed to genetic engineering, embryology, and anatomy.

Created2018-08-31
173232-Thumbnail Image.png
Description

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through the blastocyst stage just before it implants in the uterus. Embryonic stem cells are useful for experiments because they are self-renewing and able to develop into almost any cell type in the body. Martin later identified a key chemical component in limb development and continues to study embryogenesis, or the growth of embryos over time. Martin’s work on embryonic stem cells has allowed scientists to further research and treat human diseases, and her study of how organs form has helped scientists learn about the healthy growth of embryos.

Created2019-07-31
Description

Eugen Steinach researched sex hormones and their effects on mammals in the late nineteenth and early twentieth centuries in Europe. He experimented on rats by removing their testicles and implanting them elsewhere in their bodies, and he found that the testes interstitial cells produce male sex hormones. He developed the

Eugen Steinach researched sex hormones and their effects on mammals in the late nineteenth and early twentieth centuries in Europe. He experimented on rats by removing their testicles and implanting them elsewhere in their bodies, and he found that the testes interstitial cells produce male sex hormones. He developed the Steinach Rejuvenation Procedure, which he claimed could rejuvenate men by increasing their production of sex hormones. Steinach’s work on female sex hormones and on ovarian extracts led to the development of the first standardized injectable estrogen. Steinach’s research on reproductive hormones helped researchers explain the roles of sex hormones and develop hormone drugs.

Created2017-02-16
173305-Thumbnail Image.png
Description

In 1996, the US Congress mandated that the US Environmental Protection Agency (EPA) create and regulate the Endocrine Disruptor Screening Program. The program tests industrial and agricultural chemicals for hormonal impacts in humans and in wildlife that may disrupt organisms' endocrine systems. The endocrine system regulates the release of small

In 1996, the US Congress mandated that the US Environmental Protection Agency (EPA) create and regulate the Endocrine Disruptor Screening Program. The program tests industrial and agricultural chemicals for hormonal impacts in humans and in wildlife that may disrupt organisms' endocrine systems. The endocrine system regulates the release of small amounts of chemical substances called hormones to keep the body functioning normally. Some chemicals can impede the endocrine system's function by mimicking or blocking hormone reception, which can disrupt processes of development and reproduction and harm organisms. As of 2017, the Endocrine Disruptor Screening Program is the largest US program to identify and regulate chemicals that affect the normal production of sex hormones like estrogen and androgen, which can have long-term effects on development and reproduction.

Created2017-02-02
Description

In the early 1920s, researchers Edgar Allen and Edward Adelbert Doisy conducted an experiment that demonstrated that ovarian follicles, which produce eggs in mammals, also contain and produce what they called the primary ovarian hormone, later renamed estrogen. In their experiment, Doisy and Allen extracted estrogen from the ovarian follicles

In the early 1920s, researchers Edgar Allen and Edward Adelbert Doisy conducted an experiment that demonstrated that ovarian follicles, which produce eggs in mammals, also contain and produce what they called the primary ovarian hormone, later renamed estrogen. In their experiment, Doisy and Allen extracted estrogen from the ovarian follicles of hogs and proved that they had isolated estrogen by using a measurement later renamed the Allen-Doisy test. Allen and Doisy’s 1923 experiment to isolate estrogen showed it was made within the ovaries and also established a method for isolating the sex hormone. That method provided a basis for future research on hormones. Later researchers showed that estrogen functions in the menstrual cycles of primates by signaling for the tissue lining the uterus (endometrium) to thicken in preparation for possible implantation of a fertilized egg.

Created2017-03-02
173256-Thumbnail Image.png
Description

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months. As long as the stem cells remain unspecialized, meaning they lack tissue-specific structures, they are able to sustain long-term self-renewal.

Created2010-10-29