The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
172903-Thumbnail Image.png
Description

This study aims to provide information to answer the following question: While some scientists claim they can indefinitely culture a stem cell line in vitro, what are the consequences of those culturing practices? An analysis of a cluster of articles from the Embryo Project Encyclopedia provides information to suggest possible

This study aims to provide information to answer the following question: While some scientists claim they can indefinitely culture a stem cell line in vitro, what are the consequences of those culturing practices? An analysis of a cluster of articles from the Embryo Project Encyclopedia provides information to suggest possible solutions to some potential problems in cell culturing, recognition of benefits for existing or historical culturing practices, and identification of gaps in scientific knowledge that warrant further research.

Created2020-12-16
172793-Thumbnail Image.png
Description

In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University

In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University in Kyoto, Japan. They called the pluripotent stem cells that they produced induced pluripotent stem cells (iPSCs) because they had induced the adult cells, called differentiated cells, to become pluripotent stem cells through genetic manipulation. Yamanaka received the Nobel Prize in Physiology or Medicine in 2012, along with John Gurdon, as their work showed scientists how to reprogram mature cells to become pluripotent. Takahashi and Yamanaka's 2006 and 2007 experiments showed that scientists can prompt adult body cells to dedifferentiate, or lose specialized characteristics, and behave similarly to embryonic stem cells (ESCs).

Created2015-06-01