The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 33
Filtering by

Clear all filters

172905-Thumbnail Image.png
Description

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.

Created2012-10-11
172920-Thumbnail Image.png
Description

During the twentieth and twenty-first centuries, Robert Paul Lanza studied embryonic stem cells, tissues,
and endangered species as chief scientific officer of Advanced Cell
Technology, Incorporated in Worcester, Massachusetts. Lanza's team cloned
the endangered species of gaur Bos gaurus.
Although the gaur did not survive long,

During the twentieth and twenty-first centuries, Robert Paul Lanza studied embryonic stem cells, tissues,
and endangered species as chief scientific officer of Advanced Cell
Technology, Incorporated in Worcester, Massachusetts. Lanza's team cloned
the endangered species of gaur Bos gaurus.
Although the gaur did not survive long, Lanza successfully cloned
another cow-like creature, called the banteng
(Bos
javanicus). Lanza also worked on cloning human embryos
to harvest stem cells, which could be used to treat dieases. While
previous techniques required the embryo's destruction, Lanza
developed a harvesting technique that does not destroy the embryo,
forestalling many ethical objections to human embryonic
research.

Created2015-02-11
Description

The Southern Gastric-Brooding Frog (Rheobatrachus silus) was an aquatic frog that lived in south-east Australia. In 2002, the International Union for Conservation of Nature Red List declared the frog extinct, although no wild specimens had been reported since 1981. As the common name alludes to, the R.
silus

The Southern Gastric-Brooding Frog (Rheobatrachus silus) was an aquatic frog that lived in south-east Australia. In 2002, the International Union for Conservation of Nature Red List declared the frog extinct, although no wild specimens had been reported since 1981. As the common name alludes to, the R.
silus was a gastric-brooder, meaning that the female's eggs developed inside of her stomach. Weeks after ingestion, juvenile frogs escape through the mother's mouth. Because no other observed species performs this reproductive behavior, in the early twenty-first century R. silus became a target of
the de-extinction movement that aims to resurrect extinct species. Researchers studied this frog's reproductive behavior and how the eggs and embryos escape digestion. Some scientists claimed that resurrecting this frog could result in future medical applications related to digestion and to reprogramming organ function, as during pregnancy, R. silus's stomach physiologically functioned as a uterus.

Created2015-01-26
173233-Thumbnail Image.png
Description

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos. Illmensee also worked with human embryos, investigating how embryos split to form identical twins.

Created2017-02-26
172854-Thumbnail Image.png
Description

Dizhou Tong, also called Ti Chou Tung, studied marine animals and helped introduce and organize experimental embryology in China during the twentieth century. He introduced cellular nuclear transfer technology to the Chinese biological community, developed methods to clone organisms from many marine species, and investigated the role of cytoplasm in

Dizhou Tong, also called Ti Chou Tung, studied marine animals and helped introduce and organize experimental embryology in China during the twentieth century. He introduced cellular nuclear transfer technology to the Chinese biological community, developed methods to clone organisms from many marine species, and investigated the role of cytoplasm in early development. Tong's administrative and scientific leadership in the fields of marine, cellular, and developmental biology contributed to China's experimental embryology research programs.

Created2014-02-18
172864-Thumbnail Image.png
Description

In the 1990s, Ian Wilmut, Jim McWhir, and Keith Campbell performed experiments while working at the Roslin Institute in Roslin, Scotland. Wilmut, McWhir, and Campbell collaborated with Angelica Schnieke and Alex J. Kind at PPL Therapeutics in Roslin, a company researching cloning and genetic manipulation for livestock. Their experiments

In the 1990s, Ian Wilmut, Jim McWhir, and Keith Campbell performed experiments while working at the Roslin Institute in Roslin, Scotland. Wilmut, McWhir, and Campbell collaborated with Angelica Schnieke and Alex J. Kind at PPL Therapeutics in Roslin, a company researching cloning and genetic manipulation for livestock. Their experiments resulted in several sheep being born in July 1996, one of which was a sheep named Dolly born 5 July 1996. Dolly was the first sheep cloned and developed from the nuclei of fully differentiated adult cells, rather than from the nuclei of early embryonic cells. They published their results in Viable Offspring Derived from Fetal and Adult Mammalian Cells (abbreviated Viable Offspring) on 27 February 1997.

Created2014-10-10
172874-Thumbnail Image.png
Description

To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research, in 2007. The document provided scientific and

To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research, in 2007. The document provided scientific and legal background, described ethical and social issues associated with research using part-human part-animal embryos, supplied a questionnaire for citizens to return to the HFEA with their opinions, and offered a list of resources for further reading to stimulate public debate. The strategy of surveying the public provided a template for developing further policy in the United Kingdom and other countries, as well as for educating citizens on embryological research.

Created2014-11-04
172883-Thumbnail Image.png
Description

In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA formulated the report after conducting a series of surveys and

In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA formulated the report after conducting a series of surveys and debates from earlier in 2007. The HFEA issued a statement in September 2007, followed by an official report published on 1 October 2007. Their report on human-animal chimeras set a worldwide precedent for discussions of the ethical use of those embryos in labs. The HFEA's report led the UK government to pass legislature about the use of human-animal cytoplasmic hybrid embryos for research in the UK.

Created2014-11-22
173268-Thumbnail Image.png
Description

In 1894, William Stewart Halsted published The Results of Operations for the Cure of Cancer of the Breast Performed at the Johns Hopkins Hospital from June, 1889, to January, 1894, in the medical journal Annals of Surgery. In the article, Halsted describes the results from fifty of his operations on

In 1894, William Stewart Halsted published The Results of Operations for the Cure of Cancer of the Breast Performed at the Johns Hopkins Hospital from June, 1889, to January, 1894, in the medical journal Annals of Surgery. In the article, Halsted describes the results from fifty of his operations on women with breast cancer, performed at Johns Hopkins Hospital in Baltimore, Maryland. Those operations involved a surgical procedure Halsted called radical mastectomy, which consists in removing all of the patient’s breast tissue, chest muscle, and underarm lymph nodes. Halsted’s surgery effectively cured breast cancer in a time period when no other effective treatment options were available. The radical mastectomy remained the standard of care from the 1890s to the 1970s as a means of treating a type of reproductive cancer common to women.

Created2017-06-15
Description

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell

In the second half of the
twentieth century, scientists learned how to clone organisms in some
species of mammals. Scientists have applied somatic cell nuclear transfer to clone human and
mammalian embryos as a means to produce stem cells for laboratory
and medical use. Somatic cell nuclear transfer (SCNT) is a technology applied in cloning, stem cell
research and regenerative medicine. Somatic cells are cells that
have gone through the differentiation process and are not germ
cells. Somatic cells donate their nuclei, which scientists
transplant into eggs after removing their nucleuses (enucleated eggs).
Therefore, in SCNT, scientists replace the nucleus in an egg cell
with the nucleus from a somatic cell.

Created2014-11-04