The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 39
Filtering by

Clear all filters

175247-Thumbnail Image.jpg
Description

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring. Compared to the molecular structure of estriol, the molecular structure of estradiol is missing one oxygen-hydrogen or OH group, and estrone lacks the OH group, and one hydrogen molecule that results in a double bonded oxygen atom. These steroid hormones bind to specific cell receptor molecules and induce transcriptional changes in cells. The production of estriol increases during pregnancy, estradiol production increases during stages of the menstrual cycle, and estrone levels increase during menopause. The differing bonds and chemical arrangements enable scientists to determine the different concentrations of the molecules.

Created2017-05-18
173932-Thumbnail Image.png
Description

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced. Non-genetic sex determination occurs when the sex of an organism can be altered during a sensitive period of development due to external factors such as temperature, humidity, or social interactions. Temperature-dependent sex determination (TSD), where the temperature of the embryo's environment influences its sex development, is a widespread non-genetic process of sex determination among vertebrates, including reptiles. All crocodilians, most turtles, many fish, and some lizards exhibit TSD.

Created2013-02-01
173902-Thumbnail Image.png
Description

Thomas Joseph King Jr. was a developmental biologist who, with fellow scientist Robert Briggs, pioneered a method of transplanting nuclei from blastula cells into fresh egg cells lacking nuclei. This method, dubbed nuclear transplantation, facilitated King's studies on cancer cell development. King's work was instrumental for the development of cloning

Thomas Joseph King Jr. was a developmental biologist who, with fellow scientist Robert Briggs, pioneered a method of transplanting nuclei from blastula cells into fresh egg cells lacking nuclei. This method, dubbed nuclear transplantation, facilitated King's studies on cancer cell development. King's work was instrumental for the development of cloning of fish, insects, and mammals.

Created2012-01-01
173414-Thumbnail Image.png
Description

In 1949, Priscilla White published Pregnancy Complicating Diabetes, which described the results and implications of a fifteen-year study about pregnant diabetic women. Published in the American Journal of Medicine, the article details possible causes of and ways to prevent the high fetal mortality rate associated with pregnant diabetic women. Diabetes

In 1949, Priscilla White published Pregnancy Complicating Diabetes, which described the results and implications of a fifteen-year study about pregnant diabetic women. Published in the American Journal of Medicine, the article details possible causes of and ways to prevent the high fetal mortality rate associated with pregnant diabetic women. Diabetes is a disease in which the body's ability to produce or respond to the hormone insulin is impaired, and it can be particularly dangerous during pregnancies. In her article, White reported that prematurely delivering infants for diabetic pregnant women reduces infant and maternal mortality rates. Pregnancy Complicating Diabetes helped make premature delivery of infants the standard of care for diabetic pregnant women, and it has contributed to the increased survival rate of infants born from diabetic mothers from less than fifty percent in the 1940s to over ninety percent in 2017.

Created2017-10-24
173245-Thumbnail Image.png
Description

Published in 1971, Adenocarcinoma of the Vagina: Association of Maternal Stilbestrol Therapy with Tumor Appearance in Young Women, by Arthurs L. Herbst and colleagues, was the first piece of literature connecting maternal use of the drug diethylstilbestrol (DES), also called stilbestrol, with the development of a rare and severe form

Published in 1971, Adenocarcinoma of the Vagina: Association of Maternal Stilbestrol Therapy with Tumor Appearance in Young Women, by Arthurs L. Herbst and colleagues, was the first piece of literature connecting maternal use of the drug diethylstilbestrol (DES), also called stilbestrol, with the development of a rare and severe form of vaginal cancer in young women. Diethylstilbestrol was later classified as an endocrine disruptor, a substance that disrupts the hormonal function of the body in those exposed to it during development or later in life. After Herbst and his team established the connection between DES and the occurrence of breast cancer, cervical cancer, infertility, and reproductive abnormalities, the US federal government banned use the drug for pregnant women. The article was published in the New England Journal of Medicine.

Created2017-04-12
173305-Thumbnail Image.png
Description

In 1996, the US Congress mandated that the US Environmental Protection Agency (EPA) create and regulate the Endocrine Disruptor Screening Program. The program tests industrial and agricultural chemicals for hormonal impacts in humans and in wildlife that may disrupt organisms' endocrine systems. The endocrine system regulates the release of small

In 1996, the US Congress mandated that the US Environmental Protection Agency (EPA) create and regulate the Endocrine Disruptor Screening Program. The program tests industrial and agricultural chemicals for hormonal impacts in humans and in wildlife that may disrupt organisms' endocrine systems. The endocrine system regulates the release of small amounts of chemical substances called hormones to keep the body functioning normally. Some chemicals can impede the endocrine system's function by mimicking or blocking hormone reception, which can disrupt processes of development and reproduction and harm organisms. As of 2017, the Endocrine Disruptor Screening Program is the largest US program to identify and regulate chemicals that affect the normal production of sex hormones like estrogen and androgen, which can have long-term effects on development and reproduction.

Created2017-02-02
173318-Thumbnail Image.png
Description

Edward Charles Dodds researched the function and effects of natural and artificial hormones on the endocrine system in England during the twentieth century. Though he first worked with hormones such as insulin, Dodds focused on the effects of estrogen in the body and how to replicate those effects with artificial

Edward Charles Dodds researched the function and effects of natural and artificial hormones on the endocrine system in England during the twentieth century. Though he first worked with hormones such as insulin, Dodds focused on the effects of estrogen in the body and how to replicate those effects with artificial substances. In 1938, along with chemist Robert Robinson, Dodds synthesized the first synthetic estrogen called diethylstilbestrol. Despite the wide use of diethylstilbestrol to treat a variety of hormonal problems like miscarriages during pregnancy and menopause, Dodds argued against the use of synthetic substances in the human body due to their unknown effects. Just before Dodds's death, his hypotheses were confirmed when researchers showed that people exposed to diethylstilbestrol often developed cancer. Dodds was one of the first researchers to investigate the endocrine or hormone system in humans, and his research led to the creation of other synthetic hormones used in contraceptive pills and hormone replacements.

Created2017-03-06
Description

In 1948, Olive Watkins Smith published 'Diethylstilbestrol in the Prevention and Treatment of Complications of Pregnancy' in the American Journal of Obstetrics and Gynecology. In 632 women treated with diethylstilbestrol, Smith demonstrated that the drug stimulated the production of progesterone, a hormone that regulates the

In 1948, Olive Watkins Smith published 'Diethylstilbestrol in the Prevention and Treatment of Complications of Pregnancy' in the American Journal of Obstetrics and Gynecology. In 632 women treated with diethylstilbestrol, Smith demonstrated that the drug stimulated the production of progesterone, a hormone that regulates the uterine condition during pregnancy. On the basis of her article, and several follow up articles authored by Smith and her husband, George Van Siclen Smith, physicians around the world began prescribing DES to women at risk for pregnancy complications like miscarriage and premature delivery. However, in 1953, researchers at found that DES did not prevent pregnancy complications. In 1970, researchers linked fetal exposure to DES to rare and severe cancers later in life. Researchers labeled DES as an endocrine disruptor, a substance that disrupts the hormone system of the body across multiple generations.

Created2017-02-21
173259-Thumbnail Image.png
Description

Sindell v. Abbott Laboratories was a 1980 California case that established the doctrine of market share liability for personal injury cases. For such liability, when a drug causes personal injury and the manufacturer of the drug cannot be identified, each producer is responsible for paying the settlement in proportion to

Sindell v. Abbott Laboratories was a 1980 California case that established the doctrine of market share liability for personal injury cases. For such liability, when a drug causes personal injury and the manufacturer of the drug cannot be identified, each producer is responsible for paying the settlement in proportion to the percentage of the market they supplied. Judith Sindell and Maureen Rogers brought the case against the producers of diethylstilbestrol (DES), which their mothers had taken during pregnancy to prevent miscarriage and other complications. Sindell and Rogers alleged that their mothers' ingestions of DES during pregnancy later caused Sindell and Rogers to develop cancers at the onset of puberty, but they could not identify the specific manufacturer of the drug. The market share liability ruling in Sindell allowed millions of DES-affected individuals to seek restitution for reproductive cancers caused by prenatal exposure to DES.

Created2017-06-08
173268-Thumbnail Image.png
Description

In 1894, William Stewart Halsted published The Results of Operations for the Cure of Cancer of the Breast Performed at the Johns Hopkins Hospital from June, 1889, to January, 1894, in the medical journal Annals of Surgery. In the article, Halsted describes the results from fifty of his operations on

In 1894, William Stewart Halsted published The Results of Operations for the Cure of Cancer of the Breast Performed at the Johns Hopkins Hospital from June, 1889, to January, 1894, in the medical journal Annals of Surgery. In the article, Halsted describes the results from fifty of his operations on women with breast cancer, performed at Johns Hopkins Hospital in Baltimore, Maryland. Those operations involved a surgical procedure Halsted called radical mastectomy, which consists in removing all of the patient’s breast tissue, chest muscle, and underarm lymph nodes. Halsted’s surgery effectively cured breast cancer in a time period when no other effective treatment options were available. The radical mastectomy remained the standard of care from the 1890s to the 1970s as a means of treating a type of reproductive cancer common to women.

Created2017-06-15