The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 67
Filtering by

Clear all filters

173885-Thumbnail Image.png
Description

Human pluripotent stem cells are valued for their potential to form numerous specialized cells and for their longevity. In the US, where a portion of the population is opposed to destruction of human embryos to obtain stem cells, what avenues are open to scientists for obtaining pluripotent cells that do

Human pluripotent stem cells are valued for their potential to form numerous specialized cells and for their longevity. In the US, where a portion of the population is opposed to destruction of human embryos to obtain stem cells, what avenues are open to scientists for obtaining pluripotent cells that do not offend the moral sensibilities of a significant number of citizens? It is this question that the official position paper, or white paper, "Alternative Sources of Human Pluripotent Stem Cells," published in May 2005 by the President's Council on Bioethics under the chairmanship of Leon Kass, seeks to answer. Three experts external to the council, Andrew Fire from the Stanford University School of Medicine, Markus Grompe of the Oregon Health and Science University, and Janet Rossant from the Samuel Lunenfeld Research Institute in Toronto, also reviewed the white paper prior to publication.

Created2011-02-22
173903-Thumbnail Image.png
Description

Anatomical models have always been a mainstay of descriptive embryology. As the training of embryologists grew in the late 1800s, so too did the need for large-scale teaching models. Embryo wax models, such as those made by Adolf Ziegler and Gustav Born, were popular in the latter part of the

Anatomical models have always been a mainstay of descriptive embryology. As the training of embryologists grew in the late 1800s, so too did the need for large-scale teaching models. Embryo wax models, such as those made by Adolf Ziegler and Gustav Born, were popular in the latter part of the nineteenth century and the early twentieth century as a way to visualize, in three dimensions, the fine detail of embryos without the aid of a microscope. While these models were found in many university laboratories, museums of science, and even expositions and world's fairs, they were anything but easy to make or obtain. Wax modeling required skill, patience, and specialized tools. Small laboratories with only one or two embryologists often found the prospect of wax modeling too laborious, too difficult, and too expensive to make the pursuit worthwhile. As an alternative, Susanna Phelps Gage, an embryologist at Cornell University, perfected a technique of using stacks of absorbent blotting paper rather than stacks of wax plates for constructing embryo models. She first demonstrated her blotting paper method to other embryologists at the annual meeting of the Association of American Anatomists in 1905 and later at the International Zoological Congress, held in Boston in August 1907.

Created2010-11-17
173911-Thumbnail Image.png
Description

As the third director of the Carnegie Institute of Washington s Department of Embryology, George Washington Corner made a number of contributions to the life sciences as well as to administration. Corner was born on 12 December 1889 in Baltimore, Maryland, near the newly established Johns Hopkins University. Although Corner

As the third director of the Carnegie Institute of Washington s Department of Embryology, George Washington Corner made a number of contributions to the life sciences as well as to administration. Corner was born on 12 December 1889 in Baltimore, Maryland, near the newly established Johns Hopkins University. Although Corner was not exposed to science much in school at a young age, he developed an early appreciation for science through conversations with his father about geography and by looking through the family's National Geographic magazines.

Created2007-11-01
173386-Thumbnail Image.png
Description

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers

Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers initially called those cells Evans-Kaufman cells. In 1992, Kaufman published The Atlas of Mouse Development, a book that included photographs of mice development and mice organs over time. Kaufman also wrote books about UK medical history, phrenology, or the study of craniums as an indicator of character or mental ability, and medical teaching in the eighteenth and nineteenth centuries. Kaufman’s anatomical records and experiments in mouse development contributed to genetic engineering, embryology, and anatomy.

Created2018-08-31
173232-Thumbnail Image.png
Description

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through

In the twentieth and early twenty-first centuries, Gail Roberta Martin specialized in biochemistry and embryology, more specifically cellular communication and the development of organs. In 1981, she named any cell taken from inside a human embryo at the blastocyst stage an “embryonic stem cell”. During development, an embryo goes through the blastocyst stage just before it implants in the uterus. Embryonic stem cells are useful for experiments because they are self-renewing and able to develop into almost any cell type in the body. Martin later identified a key chemical component in limb development and continues to study embryogenesis, or the growth of embryos over time. Martin’s work on embryonic stem cells has allowed scientists to further research and treat human diseases, and her study of how organs form has helped scientists learn about the healthy growth of embryos.

Created2019-07-31
173256-Thumbnail Image.png
Description

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such

According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months. As long as the stem cells remain unspecialized, meaning they lack tissue-specific structures, they are able to sustain long-term self-renewal.

Created2010-10-29
173114-Thumbnail Image.png
Description

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells,

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells, embryonic stem cells, or ESCs, mesenchymal stem cells, or MSCs, and induced pluripotent stem cells, or iPS cells. Pluripotent stem cells are a special cell type that can give rise to other types of cells and are essential for development. The authors describe the strengths and weaknesses of each type of stem cell for regenerative medicine applications. They state that both MSC and iPS types of stem cells have the potential to regenerate tissues among many other therapeutic possibilities. In their article, Zomer and colleagues review the potential for MSCs and iPS cells to reshape the field of regenerative and personal medicine.

Created2021-08-04
173178-Thumbnail Image.png
Description

Thomson, et al. v. Thompson, et al. was a lawsuit filed in the United States District Court for the District of Columbia on 8 May 2001 as Civil Action Number 01-CV-0973. This lawsuit was filed in hopes of gaining injunctive relief against a moratorium on the federal funding of stem

Thomson, et al. v. Thompson, et al. was a lawsuit filed in the United States District Court for the District of Columbia on 8 May 2001 as Civil Action Number 01-CV-0973. This lawsuit was filed in hopes of gaining injunctive relief against a moratorium on the federal funding of stem cell research. The plaintiffs in the case were seven prominent scientists who performed embryonic stem cell research and three patients: James Thomson, Roger Pedersen, John Gearhart, Douglas Melton, Dan Kaufman, Alan Trounson, Martin Pera, Christopher Reeve, James Cordy, and James Tyree. The suit was filed against Tommy G. Thompson in his official capacity as Secretary of the Department of Health and Human Services; Ruth Kirschstein in her official capacity as Acting Director of the National Institutes of Health; the Department of Health and Human Services (HHS); and the National Institutes of Health (NIH). The plaintiffs argued that by illegally delaying and withholding federal funds for stem cell research, the defendants were causing irreparable harm to research and development of potential therapies for patients.There was also concern about potentially preventing young researchers from entering the field, and restricting the sharing of discoveries between scientists that federal funding of scientific research fosters.

Created2010-09-29
173191-Thumbnail Image.png
Description

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo,

Franklin Paine Mall was born into a farming family in Belle Plaine, Iowa, on 28 September 1862. While he attended a local academy, an influential teacher fueled Mall's interest in science. From 1880-1883, he studied medicine at the University of Michigan, attaining his MD degree in 1883. William J. Mayo, who later became a famous surgeon and co-founder of the Mayo Clinic in Rochester, Minnesota, was a classmate of Mall's. Throughout his studies at Michigan, he was influenced by Corydon L. Ford, a professor of anatomy, Victor C. Vaughn, a biochemist and bacteriologist, and Henry Sewall, a physiologist.

Created2007-11-01