The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 49
Filtering by

Clear all filters

175283-Thumbnail Image.jpg
Description

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar

In the 1930s, George Beadle and Boris Ephrussi discovered factors that affect eye colors in developing fruit flies. They did so while working at the California Institute of Technology in Pasadena, California. (1) They took optic discs (colored fuchsia in the image) from fruit fly larvae in the third instar stage of development. Had the flies not been manipulated, they would have developed into adults with vermilion eyes. (2) Beadle and Ephrussi transplanted the donor optic discs into the bodies of several types of larvae, including those that would develop with normal colored eyes (brick red), and those that would develop eyes with other shades of red, such as claret, carmine, peach, and ruby (grouped together and colored black in the image). (3a) When implanted into normal hosts that would develop brick red eyes, the transplanted optic disc developed into an eye that also was brick red. (3b) When implanted into abnormal hosts that would develop eyes of some other shade of red, the transplanted optic discs developed into eyes that were vermilion. Beadle and Ephrussi concluded that there was a factor, such as an enzyme or some other protein, produced outside of the optic disc that influenced the color of the eye that developed from the disc.

Created2016-10-11
Description

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that

Fruit flies of the species Drosophila melanogaster develop from eggs to adults in eight to ten days at 25 degrees Celsius. They develop through four primary stages: egg, larva, pupa, and adult. When in the wild, female flies lay their fertilized eggs in rotting fruit or other decomposing material that can serve as food for the larvae. In the lab, fruit flies lay their fertilized eggs in a mixture of agar, molasses, cornmeal, and yeast. After roughly a day, each egg hatches into a larva. The larva eats the material it finds itself in, and for four days it grows into stages of increasing size, called first-, second-, and third-instar stages. This figure shows a third-instar larva. Each larva has sections of tissue called imaginal discs, from which various parts of the adult anatomy develop. This figure shows the imaginal discs that will develop into antennae (colored purple), eyes (colored red), brain (colored blue), and wings (colored green). After four days, the larva turns into a pupa by making a casing, similar to caterpillars, and grows within the casing. After a four-day metamorphosis, the adult fly then emerges from its pupal casing. Adult males look somewhat different from adult females, as the males have darker rear abdomen segments than do females. The warmer the temperature around the eggs, the faster the flies develop to adults.

Created2016-10-11
Description

During the mid-twentieth century, Virginia Apgar worked as an obstetrical anesthesiologist and gave drugs to women that reduced their pain during childbirth in the US. In 1953, Apgar created a scoring system, called the Apgar score, that uses five measurements, including heart rate and breathing rate. The Apgar score evaluates

During the mid-twentieth century, Virginia Apgar worked as an obstetrical anesthesiologist and gave drugs to women that reduced their pain during childbirth in the US. In 1953, Apgar created a scoring system, called the Apgar score, that uses five measurements, including heart rate and breathing rate. The Apgar score evaluates newborn infants and determines who needs immediate medical attention. Apgar's work helped decrease infant mortality rates. As of 2020, hospitals around the world use the Apgar score.

Created2021-08-12
175192-Thumbnail Image.jpg
Description

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some

This diagram shows the life cycle of Neurospora crassa, a mold that grows on bread. N. crassa can reproduce through an asexual cycle or a sexual cycle. The asexual cycle (colored as a purple circle), begins in this figure with (1a) vegetative mycelium, which are strands of mature fungus. Some of the strands form bulbs (2a) in a process called conidiation. From those bulbs develop the conidia, which are spores. Next, (3a) a single conidium separates from its strand and elongates until it forms mycelium. The sexual cycle (colored as an orange circle) also starts with the (1b) vegetative mycelium. The strands develop into a structure called the proto-perithecium, and reproduction involves the proto-perithecium interacting with the conidia from a different mycelium. Reproduction also involves two mating types, called type A and type a. In reproduction, type A pairs with type a, and a conidium can be of either type, as can a proto-perithecium. A proto-perithecium fertilized by a conidium of the opposite mating type (2b) will develop into a perithecium. Inside the perithecium, croziers develop and mature into asci. (3b) In a maturing ascus, there are two nuclei (one represented as a white circle and one as a black circle), one of which comes from the conidium and the other from the proto-perithecium. Each nuclei has only one set of chromosomes (haploid). The two haploid nuclei fuse into a diploid nucleus (represented as a half black half white circle). The nucleus then divides, separating into two nuclei each with one set of chromosomes. Those nuclei duplicate themselves (represented as two white circles and two black circles), and then all the nuclei duplicate themselves again (represented as four white circles and four black circles). This process yields eight haploid ascospores within a mature ascus. Ascospores are spores, and function for the mold as do seeds for plants. The mature perithecium releases its ascospores (4b), which germinate and grow into mycelium. In the 1930s and 1940s, George Beadle and Ed Tatum collected the spores of irradiated N. crassa to study how genes produced enzymes.

Created2016-10-12
175204-Thumbnail Image.jpg
Description

In 1935, George Beadle and Boris Ephrussi developed a technique to transplant optic discs between fruit fly larvae. They developed it while at the California Institute of Technology in Pasedena, California. Optic discs are tissues from which the adult eyes develop. Beadle and Ephrussi used their technique to study the

In 1935, George Beadle and Boris Ephrussi developed a technique to transplant optic discs between fruit fly larvae. They developed it while at the California Institute of Technology in Pasedena, California. Optic discs are tissues from which the adult eyes develop. Beadle and Ephrussi used their technique to study the development of the eye and eye pigment. (1) The experimenter dissects a donor larva, which is in the third instar stage of development, and removes the optic disc (colored red) with a micropipette. Because the antenna disc is attached to the optic disc, they are often removed and transplanted together. (2) The experimenter then implants the optic disc into a host larva, in the part of the host that will develop into an adult abdomen. As the host larva matures to adulthood, the implanted optic disc develops into an eye inside the body cavity of the adult. (3) The adult host has an eye within its body, which Beadle and Ephrussi found by dissecting the adult hosts. If the antenna disc was also transplanted, sometimes the resulting eye developed with an antenna attached.

Created2016-10-11
173938-Thumbnail Image.png
Description

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived

Isotretinoin is a molecule and a byproduct (metabolite) of vitamin A, and in greater than normal amounts in pregnant women, it can cause fetal abnormalities including cleft lips, ear and eye defects, and mental retardation. Isotretinoin is commonly called by its trade name Accutane, and it's a chemical compound derived from vitamin A, or retinoic acid. Doctors prescribe isotretinoin to treat severe acne. For pregnant women, too much vitamin A or isotretinoin can also cause greater than normal rates of stillbirths and fetal disintegrations after the ninth week of gestation. Women who use isotretinoin during the first trimester of their pregnancies, even in small amounts, risk defects to their fetuses such as external ear malformations, cleft palates, undersized jaws (micrognathia), a variety of heart defects, buildups of fluids inside the skulls that leads to brain swelling (hydrocephalus), small heads and brains (microcephaly), and mental retardation.

Created2014-07-20
173408-Thumbnail Image.png
Description

Josef Warkany studied the environmental causes of birth defects in the United States in the twentieth century. Warkany was one of the first researchers to show that factors in the environment could cause birth defects, and he helped to develop guidelines for the field of teratology, the study of birth

Josef Warkany studied the environmental causes of birth defects in the United States in the twentieth century. Warkany was one of the first researchers to show that factors in the environment could cause birth defects, and he helped to develop guidelines for the field of teratology, the study of birth defects. Prior to Warkany’s work, scientists struggled to explain if or how environmental agents could cause birth defects. Warkany demonstrated that a deficiency or excess of vitamin A in maternal nutrition could cause birth defects. He also established that mercury in teething powders increased infant mortality rates. Warkany showed how substances outside the human body could adversely affect conception, growth, and development of the human fetus in utero.

Created2017-05-26
173410-Thumbnail Image.png
Description

In its 1993 decision Daubert v. Merrell Dow Pharmaceuticals, Inc., the US Supreme Court established the Daubert Standard for evaluating the admissibility of scientific knowledge as evidence in US federal courts. When it began in trial court, the case addressed whether or not Bendectin, an anti-nausea medication taken during pregnancy,

In its 1993 decision Daubert v. Merrell Dow Pharmaceuticals, Inc., the US Supreme Court established the Daubert Standard for evaluating the admissibility of scientific knowledge as evidence in US federal courts. When it began in trial court, the case addressed whether or not Bendectin, an anti-nausea medication taken during pregnancy, caused birth defects. However, after the trial court dismissed the case for lack of admissible evidence, Daubert v. Merrell Dow Pharmaceuticals, Inc. advanced through appeals courts to the US Supreme Court, where the Justices defined the criteria by which scientific knowledge, which for them included a least theories based on evidence, expert testimony from scientists, and scientific techniques, could be introduced and used in court cases as evidence. The Daubert Standard states that the judge of a case is responsible for determining what claims are admissible as scientific knowledge and as evidence in the case. The admissibility should be determined by the falsifiability of the claims, by whether or not they had passed peer reviewed, by the general scientific acceptance of the claims, and for techniques, by their error rates of the techniques. Daubert v. Merrell Dow Pharmaceuticals, Inc. set a landmark precedent in the US judicial system and influenced most subsequent legal cases that appealed to science to establish facts in trials.

Created2017-05-29
173209-Thumbnail Image.png
Description

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Created2017-02-09
173226-Thumbnail Image.png
Description

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells. In most organisms' development, three types of germ layers are responsible for the formation of tissues and organs. The outermost layer is called ectoderm, the middle layer mesoderm, and the innermost layer endoderm, although Platt called it entoderm. Platt's research provided a basis for scientists to clarify the destination or function of the germ layers in vertebrates' development.

Created2017-03-06