The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 11 - 20 of 32
Filtering by

Clear all filters

173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08
Description

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests. Pregnant women who take Thalidomide are at grater than normal risk for spontaneous abortion and for giving birth to children with developmental anomalies such as shortened, absent, or extra limbs, as well as a variety of heart, ear, and internal organ defects. The failure of rodent models to inform scientists of Thalidomide's teratogenicity in humans ignited debate about the proper use of cross-species testing during drug development.

Created2014-03-07
Description

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory

All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms. Around two billion years ago, mitochondria took up residence inside larger cells, in a process called endosymbiosis, becoming functional parts of those cells. Within each mitochondrion is the mitochondrial DNA (mtDNA), which is different from the DNA in the cell's nucleus (nDNA). Organisms inherit their mitochondria only from their mothers via egg cells (oocytes). Mitochondria contribute to the development of oocytes, the release of the oocyte from the ovary (ovulation), the union of oocyte and sperm (fertilization), all stages of embryo formation (embryogenesis), and growth of the embryo after fertilization.

Created2014-07-05
172716-Thumbnail Image.png
Description

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at

Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.

Created2013-09-17
175244-Thumbnail Image.jpg
Description

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation. The turquoise shaded region represents the prospective ectoderm, the lavender shaded region represents the prospective mesoderm, the dark blue shaded region represents the prospective endoderm, and the white shaded region represents the prospective extraembryonic area.

Created2014-02-26
175219-Thumbnail Image.jpg
Description

This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have

This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak. The cross-section shows the blastoderm's two cell layers, the epiblast and the hypoblast. The fluid filled cavity between the two cell layers is the blastocoel. The space left between the hypoblast cell layer and the yolk is called the subgerminal cavity.

Created2014-02-26
175292-Thumbnail Image.jpg
Description

The first successful cloning of a gaur in 2000 by Advanced Cell Technology involved the cells of two animals: an egg cell from a domestic cow and a skin cell from a gaur. The researchers extracted the egg cell from the ovary of the domestic cow and the skin cell

The first successful cloning of a gaur in 2000 by Advanced Cell Technology involved the cells of two animals: an egg cell from a domestic cow and a skin cell from a gaur. The researchers extracted the egg cell from the ovary of the domestic cow and the skin cell from the skin of the gaur. First, the researchers performed nuclear transplantation on the egg cell of the cow, during which they removed the nucleus of the egg cell. The mitochondria of the egg cell remained intact inside the cell. Next, the researchers fused the egg cell of the cow and the skin cell of the gaur by applying a single electric pulse. That process resulted in a cellular complex that contained the nucleus from the gaur and the mitochondria from the cow. That cellular complex was then placed into the uterus of a different domestic cow. Once the cellular complex developed into a Day 46 fetus, researchers conducted morphological and genetic tests. The fetus then further developed into a gaur calf, which lived for forty-eight hours after birth.

Created2019-06-11
173021-Thumbnail Image.png
Description

In 2007, Françoise Baylis and Jason Scott Robert published “Part-Human Chimeras: Worrying the Facts, Probing the Ethics” in The American Journal of Bioethics. Within their article, hereafter “Part-Human Chimeras,” the authors offer corrections on “Thinking About the Human Neuron Mouse,” a report published in The American Journal of Bioethics in

In 2007, Françoise Baylis and Jason Scott Robert published “Part-Human Chimeras: Worrying the Facts, Probing the Ethics” in The American Journal of Bioethics. Within their article, hereafter “Part-Human Chimeras,” the authors offer corrections on “Thinking About the Human Neuron Mouse,” a report published in The American Journal of Bioethics in 2007 by Henry Greely, Mildred K. Cho, Linda F. Hogle, and Debra M. Satz, which discussed the debate on the ethics of creating part-human chimeras. Chimeras are organisms that contain two or more genetically distinct cell lines. Both publications discuss chimeras with DNA from different species, specifically in response to studies in which scientists injected human brain cells into mice. “Part-Human Chimeras,” contributes to a chain of ethical and scientific discussion that occurred in the mid-2000s on whether people should be able to conduct research on chimeras, especially in embryos.

Created2021-06-19
173024-Thumbnail Image.png
Description

In 2006, bioethicist Jason Scott Robert published “The Science and Ethics of Making Part-Human Animals in Stem Cell Biology” in The FASEB Journal. There, he reviews the scientific and ethical justifications and restrictions on creating part-human animals. Robert describes part-human animals, otherwise known as chimeras, as those resulting from the

In 2006, bioethicist Jason Scott Robert published “The Science and Ethics of Making Part-Human Animals in Stem Cell Biology” in The FASEB Journal. There, he reviews the scientific and ethical justifications and restrictions on creating part-human animals. Robert describes part-human animals, otherwise known as chimeras, as those resulting from the intentional combination of human and nonhuman cells, tissues, or organs at any stage of development. He specifically criticizes restrictions against creating part-human animals made by the National Academy of Sciences, or NAS, in 2005, arguing that while they ensure that such research is morally justifiable, they might limit scientists from conducting useful science using part-human animals or entities. Robert challenges the moral rationales behind prohibiting chimera research, arguing that they may impede scientists from conducting research that could have important benefits to biology and medicine, and suggests how to balance the conflicting moral and scientific needs of such science.

Created2021-05-25