The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 38
Filtering by

Clear all filters

173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173332-Thumbnail Image.png
Description

Camillo Golgi studied the central nervous system during the late nineteenth and early twentieth centuries in Italy, and he developed a staining technique to visualize brain cells. Called the black reaction, Golgi’s staining technique enabled him to see the cellular structure of brain cells, called neurons, with much greater precision.

Camillo Golgi studied the central nervous system during the late nineteenth and early twentieth centuries in Italy, and he developed a staining technique to visualize brain cells. Called the black reaction, Golgi’s staining technique enabled him to see the cellular structure of brain cells, called neurons, with much greater precision. Golgi also used the black reaction to identify structures within animal cells like the internal reticular apparatus that stores, packs, and modifies proteins, later named the Golgi apparatus in his honor. Golgi, along with Santiago Ramón y Cajal, received the Nobel Peace Prize in 1906 for their independent work on the structure of the nervous system. Golgi’s discovery of the black reaction enabled other scientists to better study the structure of the nervous system and its development.

Created2017-02-23
173261-Thumbnail Image.png
Description

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for

Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.

Created2017-06-08
173262-Thumbnail Image.png
Description

In Maureen Kass v. Steven Kass (1998), the Court of Appeals of New York in Albany, New York, ruled that the state should generally consider IVF consent forms signed by participants in an in vitro fertilization (IVF) program valid, binding, and enforceable in the event of a dispute. The

In Maureen Kass v. Steven Kass (1998), the Court of Appeals of New York in Albany, New York, ruled that the state should generally consider IVF consent forms signed by participants in an in vitro fertilization (IVF) program valid, binding, and enforceable in the event of a dispute. The court indicated that decisions regarding the handling of cryopreserved pre-zygotes, often called preembryos, contained within these consent forms should be upheld. Although Steven and Maureen Kass had signed IVF consent forms agreeing to donate unused preembryos to research, during their divorce Maureen argued for custody of the preembryos. The New York Court of Appeals ruled in favor of Steven Kass and concluded that the informed consent forms signed by the former couple had clearly manifested the coupleÕs mutual intent to donate any preembryos to research in the event of a dispute.

Created2013-11-01
173275-Thumbnail Image.png
Description

Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual

Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual processing, Wiesel received the Nobel Prize in Physiology or Medicine in 1981 along with David Hubel and Roger Sperry. Wiesel determined the critical period during which the visual system of a mammal develops and studied how impairment at that stage of development can cause permanent damage to the neural pathways of the eye, allowing later researchers and surgeons to study the treatment of congenital vision disorders.

Created2017-09-13
173143-Thumbnail Image.png
Description

Nuclear magnetic resonance imaging (MRI) is a technique to create a three-dimensional image of a fetus. Doctors often use MRIs to image a fetuses after an ultrasound has detected an, or has been inconclusive about an, abnormality. In 1983 researchers in Scotland first used MRI to visualize a fetus. MRIs

Nuclear magnetic resonance imaging (MRI) is a technique to create a three-dimensional image of a fetus. Doctors often use MRIs to image a fetuses after an ultrasound has detected an, or has been inconclusive about an, abnormality. In 1983 researchers in Scotland first used MRI to visualize a fetus. MRIs showed a greater level of fetal detail than ultrasound images, and researchers recognized the relevance of this technique as a means to gather information about fetal development and growth. Researchers later used the technology to take measurements of the uterus, placenta, amniotic fluid, and fetus during the first trimester of pregnancy. MRI provided doctors with a non-invasive method to diagnose and treat fetal abnormalities and maternal conditions such as pre-eclampsia.

Created2017-06-21
173106-Thumbnail Image.png
Description

Karl Landsteiner studied blood types in Europe and in the United States in the late nineteenth and early twentieth centuries. Landsteiner won the Nobel Prize in Physiology or Medicine in 1930 for detailing immunological reactions in the ABO blood group system. The ABO blood group system divides human blood into

Karl Landsteiner studied blood types in Europe and in the United States in the late nineteenth and early twentieth centuries. Landsteiner won the Nobel Prize in Physiology or Medicine in 1930 for detailing immunological reactions in the ABO blood group system. The ABO blood group system divides human blood into one of four types based on the antibodies that are present on each cell. Landsteiner's work with blood types led physicians to safely perform blood transfusions and organ transplants. Additionally, Landsteiner researched the Rh blood factor, a protein marker on the surface of blood cells and that can impact pregnancy.

Created2017-02-17
172924-Thumbnail Image.png
Description

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled bacteria, called Escherichia coli (E. coli), controlled the processes by which enzymes were produced in those bacteria. In 1959, the researchers published their results in a paper titled 'The Genetic Control and Cytoplasmic Expression of 'Inducibility' in the Synthesis of b-galactosidase by E. coli'. When they compared mutated strains of E. coli to a normal strain, Pardee, Jacob, and Monod identified the abnormal regulation processes and enzymes produced by the mutated genes. The results showed how enzymes break down the molecules that the bacteria ingested. The PaJaMas experiments uncovered some of the molecular mechanisms that regulate how some genes yield enzymes in many species.

Created2015-05-28
173291-Thumbnail Image.png
Description

In the nineteenth century, reticular theory aimed to describe the properties of neurons, the specialized cells which make up the nervous system, but was later disconfirmed by evidence. Reticular theory stated that the nervous system was composed of a continuous network of specialized cells without gaps (synapses), and was first

In the nineteenth century, reticular theory aimed to describe the properties of neurons, the specialized cells which make up the nervous system, but was later disconfirmed by evidence. Reticular theory stated that the nervous system was composed of a continuous network of specialized cells without gaps (synapses), and was first proposed by researcher Joseph von Gerlach in Germany in 1871. Reticular theory played a significant role in developmental neurobiology as it enabled scientists to theorize how the form of neural cells functioned in the context of the broader nervous system, and although disproven, reticular theory contributed to the foundation of the neuron doctrine that informed the modern field of neurobiology.

Created2017-06-19