The Embryo Project Encyclopedia (https://embryo.asu.edu) is an open-access digital encyclopedia devoted to recording and contextualizing the science of embryos, development, and reproduction. The collection of documents, images, and multimedia housed here serves as the Encyclopedia's permanent archive.

Jane Maienschein, ASU University Professor, Regents Professor, and Director of the Biology and Society Program, started the Embryo Project Encyclopedia in 2007 with support from the National Science Foundation.

Displaying 1 - 10 of 32
Filtering by

Clear all filters

175310-Thumbnail Image.jpg
Description

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage.

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Created2014-08-21
173931-Thumbnail Image.png
Description

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Created2013-11-17
173888-Thumbnail Image.png
Description

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College,

"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004. The article primarily discusses chick embryos as a model organism for nonrodent amniote gastrulation, although it intermittently touches on nonamniote gastrulation for comparative purposes. "Induction" attempts to explain the initiation of cell differentiation and embryo organization, one of the most intriguing processes of embryology.

Created2011-04-14
173909-Thumbnail Image.png
Description

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg. The dissertation was the culmination of five experiments on three species of newt embryos, of the genus Triton (presently, Triturus), performed during the summers of 1921 and 1922, which resulted in a confirmation of Spemann's organizer concept. Spemann and Mangold published the dissertation in a 1924 edition of Roux's Archives for Microscopic Anatomy and Developmental Mechanics (Roux's Archiv fur Mikroskopische Anatomie und Entwicklungsmechanik)."

Created2012-12-19
173414-Thumbnail Image.png
Description

In 1949, Priscilla White published Pregnancy Complicating Diabetes, which described the results and implications of a fifteen-year study about pregnant diabetic women. Published in the American Journal of Medicine, the article details possible causes of and ways to prevent the high fetal mortality rate associated with pregnant diabetic women. Diabetes

In 1949, Priscilla White published Pregnancy Complicating Diabetes, which described the results and implications of a fifteen-year study about pregnant diabetic women. Published in the American Journal of Medicine, the article details possible causes of and ways to prevent the high fetal mortality rate associated with pregnant diabetic women. Diabetes is a disease in which the body's ability to produce or respond to the hormone insulin is impaired, and it can be particularly dangerous during pregnancies. In her article, White reported that prematurely delivering infants for diabetic pregnant women reduces infant and maternal mortality rates. Pregnancy Complicating Diabetes helped make premature delivery of infants the standard of care for diabetic pregnant women, and it has contributed to the increased survival rate of infants born from diabetic mothers from less than fifty percent in the 1940s to over ninety percent in 2017.

Created2017-10-24
173226-Thumbnail Image.png
Description

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells. In most organisms' development, three types of germ layers are responsible for the formation of tissues and organs. The outermost layer is called ectoderm, the middle layer mesoderm, and the innermost layer endoderm, although Platt called it entoderm. Platt's research provided a basis for scientists to clarify the destination or function of the germ layers in vertebrates' development.

Created2017-03-06
173457-Thumbnail Image.png
Description

In 1986, Vern L. Katz, Deborah J. Dotters, and William Droegemueller published “Perimortem Cesarean Delivery,” an article in which they developed the Four Minute Rule for perimortem cesarean sections. The Four Minute Rule states that if a pregnant woman’s heart stops beating, physicians should begin an operation to deliver the

In 1986, Vern L. Katz, Deborah J. Dotters, and William Droegemueller published “Perimortem Cesarean Delivery,” an article in which they developed the Four Minute Rule for perimortem cesarean sections. The Four Minute Rule states that if a pregnant woman’s heart stops beating, physicians should begin an operation to deliver the fetus within four minutes and aim to have the fetus delivered within five minutes of cardiac arrest. Although cardiac arrest during pregnancy is uncommon, it can happen when pregnant women experience trauma, blood clots, infection, or have preexisting heart conditions. In the article, the authors emphasize how the Four Minute Rule increased maternal and fetal survival rates and decreased cases of severe fetal brain damage. The article “Perimortem Cesarean Delivery” was the first article to present the Four Minute Rule, which has influenced international guidelines and become the standard for maternal resuscitation and fetal survival in emergency medicine, operating rooms, and many other aspects of medical practice.

Created2017-11-15
173116-Thumbnail Image.png
Description

In July 2015, Ana J. Torvie, Lisa S. Callegari, Melissa A. Schiff, and Katherine E. Debiec published “Labor and Delivery Outcomes Among Young Adolescents,” hereafter “Labor and Delivery Outcomes,” in the American Journal for Obstetrics and Gynecology. The authors conducted a study using birth certificate data and hospital records in

In July 2015, Ana J. Torvie, Lisa S. Callegari, Melissa A. Schiff, and Katherine E. Debiec published “Labor and Delivery Outcomes Among Young Adolescents,” hereafter “Labor and Delivery Outcomes,” in the American Journal for Obstetrics and Gynecology. The authors conducted a study using birth certificate data and hospital records in the state of Washington to compare the frequency and outcomes of cesarean and surgically assisted vaginal births among different age groups of pregnant people. They found that adolescents aged eleven to fourteen years are less likely to require cesarean or surgically assisted births but that their neonates were more likely to have birth-related complications than those of adults aged twenty to twenty-four years. While previous studies had yielded conflicting results, “Labor and Delivery Outcomes” reports generalized trends about young adolescents in labor and delivery. The researchers’ findings support future physicians in making more informed considerations for the care of pregnant patients under the age of fifteen.

Created2022-08-15
173088-Thumbnail Image.png
Description

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through

A germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues. All animals, except perhaps sponges, form two or three germ layers. The germ layers develop early in embryonic life, through the process of gastrulation. During gastrulation, a hollow cluster of cells called a blastula reorganizes into two primary germ layers: an inner layer, called endoderm, and an outer layer, called ectoderm. Diploblastic organisms have only the two primary germ layers; these organisms characteristically have multiple symmetrical body axes (radial symmetry), as is true of jellyfish, sea anemones, and the rest of the phylum Cnidaria. All other animals are triploblastic, as endoderm and ectoderm interact to produce a third germ layer, called mesoderm. Together, the three germ layers will give rise to every organ in the body, from skin and hair to the digestive tract.

Created2013-09-17
175244-Thumbnail Image.jpg
Description

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation. The turquoise shaded region represents the prospective ectoderm, the lavender shaded region represents the prospective mesoderm, the dark blue shaded region represents the prospective endoderm, and the white shaded region represents the prospective extraembryonic area.

Created2014-02-26