This administrative history of the Grand Canyon Dam Adaptive Management Program (GCDAMP) includes government reports, oral history interviews and other relevant information about Colorado River law, environmental protection law, hydropower regulation, the Glen Canyon Environmental Studies that served as a precursor to GCDAMP, and the activities of the Adaptive Management Work Group, the Technical Work Group, and the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

149120-Thumbnail Image.png
ContributorsSchmidt, John C. (Contributor)
Created2014-10-31
149121-Thumbnail Image.png
ContributorsSchmidt, John C. (Contributor)
Created2014-08-28
149135-Thumbnail Image.png
Description

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior to disturbance" and that "restoring altered, damaged, O f destroyed lakes, rivers, and wetlands is a high-priority task." Effective restoration must be based on a clear definition of the value of riverine resources to society; on scientific studies that document ecosystem status and provide an understanding of ecosystem processes and resource interactions; on scientific studies that predict, mea- sure, and monitor the effectiveness of restoration techniques; and on engineering and economic studies that evaluate societal costs and benefits of restoration.

In the case of some large rivers, restoration is not a self-evident goal. Indeed, restoration may be impossible; a more feasible goal may be rehabilitation of some ecosystem components and processes in parts of the river (Gore and Shields 1995, Kondolfand Wilcock 1996, Stanford et al. 1996). In other cases, the appropriate decision may be to do nothing. The decision to manipulate ecosystem processes and components involves not only a scientific judgment that a restored or rehabilitated condition is achievable, but also a value judgment that this condition is more desirable than the status quo. These judgments involve prioritizing different river resources, and they should be based on extensive and continuing public debate.

In this article, we examine the appropriate role of science in determining whether or not to restore or rehabilitate the Colorado River in the Grand Canyon by summarizing studies carried out by numerous agencies, universities, and consulting firms since 1983. This reach of the Colorado extends 425 km between Glen Canyon Dam and Lake Mead reservoir (Figure 1). Efforts to manipulate ecosystem processes and components in the Grand Canyon have received widespread public attention, such as the 1996 controlled flood released from Glen Canyon Dam and the proposal to drain Lake Powell reservoir.

ContributorsSchmidt, John C. (Author) / Webb, Robert H. (Author) / Valdez, Richard A. (Author) / Marzolf, G. Richard (Author) / Stevens, Lawrence E. (Author)
Created1998-09
149137-Thumbnail Image.png
Description

Vegetation changes in the canyon of the Colorado River between Glen Canyon Dam and Lake Mead were studied by comparing photo­ graphs taken prior to the completion of the Glen Canyon Dam in 1963 with those taken afterwards at the same sites. The old photo­ graphs, taken by J. K.

Vegetation changes in the canyon of the Colorado River between Glen Canyon Dam and Lake Mead were studied by comparing photo­ graphs taken prior to the completion of the Glen Canyon Dam in 1963 with those taken afterwards at the same sites. The old photo­ graphs, taken by J. K. Millers, T. H. O'Sullivan, William Bell, F. A. Nims, R. B. Stanton, N. W. Carkhuff, N. H. Darton, L. R. Freeman, E. C. LaRue, and others, document conditions as they were between 1872 and 1963. In general, the older pictures show an absence of riparian plants along the banks of the river. The new photographs of each pair were taken in 1972 through 1976. The most obvious vege­tation change revealed by the photograph comparison is the in­ creased density of many species. Exotic species, such as saltcedar and camelthorn, and native riparian plants, such as sandbar willow, arrowweed, desert broom, and cattail, now form a new riparian com­munity along much of the channel of the Colorado River between Glen Canyon Dam and the Grand Wash Cliffs.

The matched photographs also reveal that changes have occurred in the amount of sand and silt deposited along the banks. The photo­ graphs show that in some areas erosion has been significant since the time of the earlier photograph while at other locations sediment has accumulated on river bars and terraces. Detailed maps are presented showing distribution of 25 plant species. Some of these, such as Russian olive and elm, were unknown along the Grand Canyon reach of the Colorado River before 1976.

Relevant data are presented to show changes in the hydrologic regime since completion of Glen Canyon Dam. Flooding, as expressed by annual maximum stage, has decreased in amplitude, and its sea­ son of occurrence has changed from spring (May-June) to a longer period from April through October. Dam construction has had a moderating influence on several other hydrologic variables. Com­pared to the predam era, discharge through the year now varies within narrow limits, changing little from month to month or season to season; annual maximum discharges are now strikingly uniform, and sediment load has materially decreased. Increases have occurred in some characteristics, however, such as daily variation in river stage and median discharge.

The interaction of decreased flooding, decreased sediment load, and increased riparian plant coverage makes the future of existing river fans, bars, and terraces uncertain. The establishment of a new ecological equilibrium at the bottom of the Grand Canyon may re­ quire many decades.

ContributorsTurner, Raymond M. (Author) / Karpiscak, Martin M. (Author)
Created1980