This administrative history of the Grand Canyon Dam Adaptive Management Program (GCDAMP) includes government reports, oral history interviews and other relevant information about Colorado River law, environmental protection law, hydropower regulation, the Glen Canyon Environmental Studies that served as a precursor to GCDAMP, and the activities of the Adaptive Management Work Group, the Technical Work Group, and the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

149115-Thumbnail Image.png
Description

The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, National Park Service, and Argonne National Laboratory, completed a decision analysis to use in the evaluation of alternatives in the Environmental Impact Statement concerning the long-term management of water releases from Glen Canyon Dam and associated management activities. Two

The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, National Park Service, and Argonne National Laboratory, completed a decision analysis to use in the evaluation of alternatives in the Environmental Impact Statement concerning the long-term management of water releases from Glen Canyon Dam and associated management activities. Two primary decision analysis methods, multicriteria decision analysis and the expected value of information, were used to evaluate the alternative strategies against the resource goals and to evaluate the influence of uncertainty.

A total of 18 performance metrics associated with 8 out of 12 resource goals (fundamental objectives) were developed by the Bureau of Reclamation and National Park Service in partnership with subject-matter teams composed of Federal, State, tribal, and private experts. A total of 19 long-term strategies associated with 7 alternatives were developed by the Bureau of Reclamation, National Park Service, Argonne National Laboratory, U.S. Geological Survey, and Cooperating Agencies. The 19 long-term strategies were evaluated against the 18 performance metrics using a series of coupled simulation models, taking into account the effects of several important sources of uncertainty. A total of 27 Federal, State, tribal, and nongovernmental agencies were invited by the Assistant Secretary of Interior to participate in a swing-weighting exercise to understand the range of perspectives about how to place relative value on the resource goals and performance metrics; 14 of the 27 chose to participate. The results of the swing-weighting exercise were combined with the evaluation of the alternatives to complete a multicriteria decision analysis. The effects of uncertainty on the ranking of long-term strategies were evaluated through calculation of the value of information.

The alternatives and their long-term strategies differed across performance metrics, producing unavoidable tradeoffs; thus, there was no long-term strategy that was dominated by another across all performance metrics. When the performance of each alternative was weighted across performance metrics, three alternatives (B, D, and G) were top-ranked depending on the set of weights proposed: Alternative B was favored by those stakeholders that placed a high value on hydropower; Alternative G was favored by those stakeholders that placed a high value on the restoration of natural processes, like beachbuilding and natural vegetation; and Alternative D was favored by the remaining stakeholders. Surprisingly, these rankings were not sensitive to the critical uncertainties that were evaluated; that is, the choice of a preferred long-term strategy was sensitive to the value-based judgment about how to place relative weight on the resource goals but was not sensitive to the uncertainties in the system dynamics that were evaluated in this analysis. The one area of uncertainty that did slightly affect the ranking of alternatives was the long-term pattern of hydrological input; because of this sensitivity, some attention to the possible effects of climate change is warranted.

The results of the decision analysis are meant to serve as only one of many sources of information that can be used to evaluate the alternatives proposed in the Environmental Impact Statement. These results only focus on those resource goals for which quantitative performance metrics could be formulated and evaluated; there are other important aspects of the resource goals that also need to be considered. Not all the stakeholders who were invited to participate in the decision analysis chose to do so; thus, the Bureau of Reclamation, National Park Service, and U.S. Department of Interior may want to consider other input.

ContributorsRunge, Michael C. (Author)
Created2015
149120-Thumbnail Image.png
ContributorsSchmidt, John C. (Contributor)
Created2014-10-31
149121-Thumbnail Image.png
ContributorsSchmidt, John C. (Contributor)
Created2014-08-28
149134-Thumbnail Image.png
Description

It is apparent that before emplacement of the dam gully degradation in terraces was restored by periodic alluvial deposition from river floods, but perhaps even more important is the redistribution of flood sands onto higher terraces by wind. Thus, we propose the term "restorative base-level hypothesis" to emphasize the dynamic

It is apparent that before emplacement of the dam gully degradation in terraces was restored by periodic alluvial deposition from river floods, but perhaps even more important is the redistribution of flood sands onto higher terraces by wind. Thus, we propose the term "restorative base-level hypothesis" to emphasize the dynamic equilibrium between gully erosion and renewed deposition, a process that remains active in Cataract Canyon but is disrupted in Grand Canyon by the presence and operation of the dam.

We developed type geomorphic settings to develop a conceptual process model for the diverse small-catchment geomorphic system in Grand Canyon. Research findings explain how streams are able to cross broad, flat terraces given a rainfall event and how they become progressively more integrated with the river. The primary channelization processes are ponding and overflow, alluvial fan progradation, and infiltration and piping, all of which contribute to nickpoint migration. An understanding of these processes was essential to building the geomorphic model.

The predictive mathematical model quantifies erosional vulnerability by applying a hypothetical rainfall event of 25 mm/hour onto a catchment above a "pristine" terrace sequence. The principal driving factor for erosion is basin area. The principal resisting factor for erosion is terrace diffusion capacity, which is a function of terrace sand cross-sectional area and infiltration capacity. Several important modifying factors are applied to the basic model to determine relative vulnerability of each terrace to gully erosion. Vulnerability of the top terrace at each catchment is plotted against the measured amount of gully erosion in that terrace, providing a base line against which progressive changes in gully depth can be easily monitored in the future.

Field studies and research show that: (1) gully erosion of terraces has been severe during the past 20 years in Grand Canyon due to unusually high precipitation; and (2) sediment deprivation coupled with the lack of large annual floods has caused a reduction in restorative (depositional) factors. Continued measurement and documentation of geomorphic processes in catchments, particularly at type geomorphic settings, will further refine and verify the predictability of the model. We conclude that beach-habitat-building flows are essential for initiating natural restorative processes and that one of the most important processes in gully mitigation may be eolian reworking of newly deposited flood sands onto higher terraces. Prior to the construction of Glen Canyon Dam, gully-deepening and river/wind depositional processes were in dynamic equilibrium, allowing the preservation of ancient cultural sites for the past several thousand years.

ContributorsThompson, Kate S. (Editor) / Potochnik, Andre R. (Editor)
Created2000-02-18
149135-Thumbnail Image.png
Description

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior

Restoration of riverine ecosystems is often stated as a management objective for regulated rivers, and floods are one of the most effective tools for accomplishing restoration. The National Re- search Council (NRC 1992) argued that ecological restoration means re- turning "an ecosystem to a close approximation of its condition prior to disturbance" and that "restoring altered, damaged, O f destroyed lakes, rivers, and wetlands is a high-priority task." Effective restoration must be based on a clear definition of the value of riverine resources to society; on scientific studies that document ecosystem status and provide an understanding of ecosystem processes and resource interactions; on scientific studies that predict, mea- sure, and monitor the effectiveness of restoration techniques; and on engineering and economic studies that evaluate societal costs and benefits of restoration.

In the case of some large rivers, restoration is not a self-evident goal. Indeed, restoration may be impossible; a more feasible goal may be rehabilitation of some ecosystem components and processes in parts of the river (Gore and Shields 1995, Kondolfand Wilcock 1996, Stanford et al. 1996). In other cases, the appropriate decision may be to do nothing. The decision to manipulate ecosystem processes and components involves not only a scientific judgment that a restored or rehabilitated condition is achievable, but also a value judgment that this condition is more desirable than the status quo. These judgments involve prioritizing different river resources, and they should be based on extensive and continuing public debate.

In this article, we examine the appropriate role of science in determining whether or not to restore or rehabilitate the Colorado River in the Grand Canyon by summarizing studies carried out by numerous agencies, universities, and consulting firms since 1983. This reach of the Colorado extends 425 km between Glen Canyon Dam and Lake Mead reservoir (Figure 1). Efforts to manipulate ecosystem processes and components in the Grand Canyon have received widespread public attention, such as the 1996 controlled flood released from Glen Canyon Dam and the proposal to drain Lake Powell reservoir.

ContributorsSchmidt, John C. (Author) / Webb, Robert H. (Author) / Valdez, Richard A. (Author) / Marzolf, G. Richard (Author) / Stevens, Lawrence E. (Author)
Created1998-09